Volume 39 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
SU Xiaohui, XIE Qixing, HE Qingqing, et al. Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1628-1637. doi: 10.13801/j.cnki.fhclxb.20210707.001
Citation: SU Xiaohui, XIE Qixing, HE Qingqing, et al. Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1628-1637. doi: 10.13801/j.cnki.fhclxb.20210707.001

Building a high-performance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure

doi: 10.13801/j.cnki.fhclxb.20210707.001
  • Received Date: 2021-04-12
  • Accepted Date: 2021-06-30
  • Rev Recd Date: 2021-06-09
  • Available Online: 2021-07-07
  • Publish Date: 2022-04-01
  • MnO2 is considered as a promising electrode material for supercapacitors because of its low cost, high abundance, large theoretical specific capacitance and environmentally friendly nature. How to obtain high-performance MnO2 electrode material with high mass loading via a low-cost synthesis method has attracted considerable attention and still remained a huge challenge. Herein, nitrided TiO2 nanorod arrays (N-TiO2) were successfully prepared on carbon fiber paper (CFP) by a novel seeded hydrothermal synthesis and thermal nitridation, and then hierarchical porous α-MnO2 nanoflowers entwined with nanoribbons were grown on the nitrided TiO2/CFP electrode. Hierarchical porous nanoflowers entwined with nanoribbons and nanorod arrays provide appropriate geometries and electronic structures, helping suppress stack tendency at high mass loading and improve the specific capacitance of electrode. The α-MnO2@N-TiO2/CFP electrode with high mass-loading of 20.9 mg·cm−2 shows a high areal capacitance of 3.0 F·cm−2 at 1 mA·cm−2 and excellent cycling stability with no capacitance reduction after 5000 cycles. The high performance makes the α-MnO2@N-TiO2/CFP electrode a promising electrode material for supercapacitor applications.

     

  • loading
  • [1]
    WANG F, WU X, YUAN X, et al. Latest advances in supercapacitors: From new electrode materials to novel device designs[J]. Chemical Society Reviews,2017,46(22):6816-6854. doi: 10.1039/C7CS00205J
    [2]
    LIU M, CONG Z, PU X, et al. High-energy asymmetric supercapacitor yarns for self-charging power textiles[J]. Advanced Functional Materials,2019,29(41):1806298. doi: 10.1002/adfm.201806298
    [3]
    吴可嘉, 董丽敏, 张琬祺, 等. 用于超级电容器的还原氧化石墨烯/NixMn1−x/2O2复合材料的电化学性能[J]. 复合材料学报, 2018, 35(5):1260-1268.

    WU K J, DONG L M, ZHANG W Q, et al. Electrochemical properties of reduced graphene oxide/NixMn1−x/2O2 composites for supercapacitors[J]. Acta Materiae Compositae Sinica,2018,35(5):1260-1268(in Chinese).
    [4]
    GUO H, GAO Q. Porous carbon synthesized through che-mical vapor deposition of ferrocene and its electrochemical capacitance behavior[J]. Rare Metals,2011,30(1):35-37.
    [5]
    ZHU Z, HU Y, JIANG H, et al. A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors[J]. Journal of Power Sources,2014,246:402-408. doi: 10.1016/j.jpowsour.2013.07.086
    [6]
    JIANG H, LI C, SUN T, et al. A green and high energy den-sity asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nano-tube electrodes[J]. Nanoscale,2012,4(3):807-812. doi: 10.1039/C1NR11542A
    [7]
    JIANG H, LI C, SUN T, et al. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures[J]. Chemical Communications,2012,48(20):2606-2608. doi: 10.1039/c2cc18079k
    [8]
    XIAO J, YANG S. Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonatehydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors[J]. RSC Advances,2011,1(4):588-595. doi: 10.1039/c1ra00342a
    [9]
    LIU T, FINN L, YU M, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Letters,2014,14(5):2522-2527. doi: 10.1021/nl500255v
    [10]
    李越, 郝晓刚, 王忠德, 等. 单极脉冲电合成聚苯胺膜及其超级电容性能[J]. 化工学报, 2010, 61(S1):120-125.

    LI Y, HAO X G, WANG Z D, et al. Unipolar pulse electrochemical polymerization of polyaniline nanofiber films for supercapacitor applications[J]. Journal of Chemical Industry and Engineering (China),2010,61(S1):120-125(in Chinese).
    [11]
    张妍兰, 王令云, 王菡, 等. 聚苯胺/石墨烯复合材料的制备及应用[J]. 化工新型材料, 2015, 43(8):1-3.

    ZHANG Y L, WANG L Y, WANG H, et al. Preparation and application of polyaniline/ graphene composites[J]. New Chemical Materials,2015,43(8):1-3(in Chinese).
    [12]
    YU G, XIE X, PAN L, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors[J]. Nano Energy,2013,2(2):213-234. doi: 10.1016/j.nanoen.2012.10.006
    [13]
    HUANG Y, LI Y, HU Z, et al. A carbon modified MnO2 nanosheet array as a stable high-capacitance supercapacitor electrode[J]. Journal of Materials Chemistry A,2013,1(34):9809-9813. doi: 10.1039/c3ta12148h
    [14]
    WEI W, CUI X, CHEN W, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews,2011,40(3):1697-1721. doi: 10.1039/C0CS00127A
    [15]
    ZHANG Q Z, ZHANG D, MIAO Z C, et al. Research progress in MnO2-carbon based supercapacitor electrode materials[J]. Small,2018,14(24):1702883. doi: 10.1002/smll.201702883
    [16]
    王易, 霍旺晨, 袁小亚, 等. 二氧化锰与二维材料复合应用于超级电容器[J]. 物理化学学报, 2020, 36(2):1904007. doi: 10.3866/PKU.WHXB201904007

    WANG Y, HUO W, YUAN X Y, et al. Composite application of MnO2 and 2D materials in supercapacitor[J]. Acta Physica Sinica,2020,36(2):1904007(in Chinese). doi: 10.3866/PKU.WHXB201904007
    [17]
    SARI F N I, So P R. TING J M, et al. MnO2 with controlled phase for use in supercapacitors[J]. Journal of the American Ceramic Society,2017,100(4):1642-1652. doi: 10.1111/jace.14636
    [18]
    GHODBANE O, PASCAL J L, FAVIER F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors[J]. ACS Applied Materials & Interfaces.,2009,1(5):1130-1139.
    [19]
    DEVARAJ S, MUNICHANDRAIAH N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. Journal of Physical Chemistry C,2008,112(11):4406-4417. doi: 10.1021/jp7108785
    [20]
    YAO W, WANG J, LI H, et al. Flexible α-MnO2 paper formed by millimeter-long nanowires for supercapacitor electrodes[J]. Journal of Power Sources,2014,247:824-830. doi: 10.1016/j.jpowsour.2013.09.039
    [21]
    DE O C J M, TIBA D Y, DOMINGUES S H. Fast synthesis of δ-MnO2 for a high-performance supercapacitor electrode[J]. SN Applied Sciences,2020,2(10):1-9.
    [22]
    UKE S J, AKHARE V P, BAMBOLE D R, et al. Recent advancements in the cobalt oxides, manganese oxides, and their composite as an electrode material for supercapacitor: A review[J]. Frontiers in Materials,2017,4:21. doi: 10.3389/fmats.2017.00021
    [23]
    WAN C, JIAO Y, LIANG D, et al. A high-performance, all-textile and spirally wound asymmetric supercapacitors based on core-sheath structured MnO2 nanoribbons and cotton-derived carbon cloth[J]. Electrochimica Acta,2018,285:262-271. doi: 10.1016/j.electacta.2018.07.036
    [24]
    LEI R, GAO J, QI L, et al. Construction of MnO2 nanosheets@graphenated carbon nanotube networks core-shell heterostructure on 316L stainless steel as binder-free supercapacitor electrodes[J]. International Journal of Hydrogen Energy,2020,45(53):28930-28939. doi: 10.1016/j.ijhydene.2019.09.070
    [25]
    WANG Z, LI Z, FENG J, et al. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability[J]. Physical Chemistry Chemical Physics,2014,16(18):8521-8528. doi: 10.1039/c3cp55456b
    [26]
    LI L, ZHANG X, WU G, et al. Supercapacitor electrodes based on hierarchical mesoporous MnOx /nitrided TiO2 nanorod arrays on carbon fiber paper[J]. Advanced Materials Interfaces,2015,2(6):1400446. doi: 10.1002/admi.201400446
    [27]
    SU X, FENG G, YU L, et al. Seed-assisted synthesis of hierarchical α-MnO2/nitride TiO2 taper nanorod arrays on carbon fiber paper with enhanced supercapacitor perfor-mance[J]. Energy Technology,2019,7(4):1800933. doi: 10.1002/ente.201800933
    [28]
    QU Y, TONG X, YAN C, et al. Hierarchical binder-free MnO2/TiO2 composite nanostructure on flexible seed graphite felt for high-performance supercapacitors[J]. Vacuum,2020,181:109648. doi: 10.1016/j.vacuum.2020.109648
    [29]
    ZHANG J, LI Y, ZHANG Y, et al. The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life[J]. Nano Energy,2018,43:91-102. doi: 10.1016/j.nanoen.2017.11.013
    [30]
    徐娟, 刘家琴, 李靖巍, 等. MnO2/H-TiO2纳米异质阵列的调控制备及超电容特性[J]. 物理化学学报, 2016, 32(10):2545-2554.

    XU J, LIU J Q, LI J W, et al. Controlled synthesis and supercapacitive performance of heterostructured MnO2/H-TiO2 nanotube arrays[J]. Acta Physica Sinica,2016,32(10):2545-2554(in Chinese).
    [31]
    YU M, ZHAO S, FENG H, et al. Engineering thin MoS2 nanosheets on TiN nanorods: Advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst[J]. ACS Energy Letters,2017,2(8):1862-1868. doi: 10.1021/acsenergylett.7b00602
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1154) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return