Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
JIANG Yongyi, YANG Mingyang, HOU Ming, et al. Preparation and Application Research of Super Absorbent Polymer Membrane for Proton Exchange Membrane Fuel Cells[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3884-3895. doi: 10.13801/j.cnki.fhclxb.20210302.001
Citation: JIANG Yongyi, YANG Mingyang, HOU Ming, et al. Preparation and Application Research of Super Absorbent Polymer Membrane for Proton Exchange Membrane Fuel Cells[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3884-3895. doi: 10.13801/j.cnki.fhclxb.20210302.001

Preparation and Application Research of Super Absorbent Polymer Membrane for Proton Exchange Membrane Fuel Cells

doi: 10.13801/j.cnki.fhclxb.20210302.001
  • Received Date: 2020-12-03
  • Accepted Date: 2021-02-05
  • Available Online: 2021-03-02
  • Publish Date: 2021-11-01
  • As an important application scenario of proton exchange membrane fuel cell (PEMFC), the development of low-temperature proton exchange membrane fuel cell (LT-PEMFC) for drones is attracting attention. The operating conditions of the PEMFC used by drones are relatively special. The hydrogen and air used as raw materials are dry gas without humidification. To meet this requirement, it is necessary to develop a proton exchange membrane with water retention capacity. We first synthesized a polymer with high water retention (PAAAM), used the solution casting method to form composite membranes, blended it into Nafion solution, and studied the content of PAAAM. Subsequently, we characterized each composite membrane by FT-IR, SEM, proton conductivity, water uptake, swelling ratio and other properties. Then we tested the battery output performance. The final results show that the optimum operating temperature range of Nafion proton exchange membrane is 50-55℃ when the raw material is dry air and dry hydrogen. When the amount of PAAAM added is 1.0wt%, the Nafion-based composite membrane (NFPAM1) has better battery performance. When the battery temperature is 55℃, the dry hydrogen gas, and the dry air flow rate are 0.1 L·min−1 and 0.55 L·min−1, respectively, the highest power density of PEMFC using NFPAM1 composite membrane is 691 mW·cm−2.

     

  • loading
  • [1]
    衣宝廉. 燃料电池—原理•技术•应用[M]. 北京: 化学工业出版社, 2003: 1-2.

    YI Baolian. Fuel cell—Priciple, technology, applicaions[M]. Beijing: Chemical Industry Press, 2003: 1-2(in Chinese).
    [2]
    JI M, WEI Z. A review of water management in polymer electrolyte membrane fuel cells[J]. Energies,2009,2(4):1057. doi: 10.3390/en20401057
    [3]
    LARMINIE J, DICKS A. Fuel cell systems explained (Second edition)[M]. Chichester: John Wiley & Sons Ltd, 2003.
    [4]
    SUBIN K, JITHESH P K. Experimental study on self-humidified operation in PEM fuel cells[J]. Sustainable Energy Technologies and Assessments,2018,27:17-22.
    [5]
    WATANABE M, UCHIDA H, SEKI Y, et al. Self-humidifying polymer electrolyte membranes for fuel cells[J]. Journal of the Electrochemical Society,1996,143(12):3847-3852. doi: 10.1149/1.1837307
    [6]
    WATANABE M, UCHIDA H, EMORI M. Analyses of self-humidification and suppression of gas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells[J]. Journal of the Electrochemical Society,1998,145(4):1137-1141. doi: 10.1149/1.1838429
    [7]
    朱晓兵, 张华民, 张宇, 等. 常压氢空自增湿燃料电池用复合质子交换膜[J]. 电源技术, 2007, 31(4):291-295.

    ZHU Xiaobing, ZHANG Huamin, ZHANG Yu, et al. A multilayer PTFE-reinforced self-humidifying membrane for fuel cell with dry H2/air under ambient pressure[J]. Chinese Journal of Power Sources,2007,31(4):291-295(in Chinese).
    [8]
    ZHU X, ZHANG H, ZHANG Y, et al. An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis[J]. Journal of Physical Chemistry B,2006,110(29):14240-14248. doi: 10.1021/jp061955s
    [9]
    KUMAR G G, KIM A R, NAHM K S, et al. Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC[J]. International Journal of Hydrogen Energy,2009,34(24):9788-9794. doi: 10.1016/j.ijhydene.2009.09.083
    [10]
    ZHANG B, CAO Y, JIANG S, et al. Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity[J]. Journal of Membrane Science,2016,518:243-253.
    [11]
    STEFFY N J, PARTHIBAN V, SAHU A K. Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity[J]. Journal of Membrane Science,2018,563:65-74. doi: 10.1016/j.memsci.2018.05.051
    [12]
    ZOHURIAAN-MEHR M J, KABIRI K. Superabsorbent polymer materials: A review[J]. Iranian Polymer Journal,2008,17(6):451-477.
    [13]
    王趁义, 王国贺, 王凤玲, 等. 氧化石墨烯改性聚(丙烯酸/丙烯酰胺)高吸水树脂的制备及性能研究[J]. 化工新型材料, 2019, 47(5):90-95.

    WANG Chenyi, WANG Guohe, WANG Fengling, et al. Preparation and property of P(AA/AM)SAP modified by GO[J]. New Chemical Materials,2019,47(5):90-95(in Chinese).
    [14]
    杨帆. 聚乙烯醇/丙烯酸/丙烯酰胺高吸水树脂的制备及性能研究[D]. 秦皇岛: 燕山大学, 2015.

    YANG Fan. Synthesis and properties of superabsorbent resin of polyvinyl alcohol/acrylicacid/acrylamide[D]. Qinhuangdao: Yanshan University, 2015(in Chinese).
    [15]
    栗海峰, 范力仁, 景录如, 等. 坡缕石/聚丙烯酸(钠)高吸水复合材料的溶胀行为[J]. 复合材料学报, 2009, 26(3):24-28.

    LI Haifeng, FAN Liren, JING Luru, et al. Swelling behavior of palygorskite/poly(sodiumacrylate)super absorbent composites[J]. Acta Materiae Compositae Sinica,2009,26(3):24-28(in Chinese).
    [16]
    中国国家标准化管理委员会. 质子交换膜燃料电池 第3部分: 质子交换膜测试方法: GB/T 20042.3—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Proton exchange membrane fuel cell: Part 3—Test method for proton exchange membrane: GB/T 20042.3—2009[S]. Beijing: China Standars Press, 2009(in Chinese).
    [17]
    YU J R, YI B L, XING D M, et al. Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells[J]. Physical Chemistry Chemical Physics,2003,5(3):611-615. doi: 10.1039/b209020a
    [18]
    WU F, ZHANG Y, LIU L, et al. Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste[J]. Carbohydrate Polymers,2012,87(4):2519-2525. doi: 10.1016/j.carbpol.2011.11.028
    [19]
    HASAN M, CHEN J, WALDECKER J R, et al. Determining the critical plastically dissipated energy for fatigue crack growth in PEM fuel cell membrane and its environmental sensitivity[J]. International Journal of Fatigue,2020,138:105697. doi: 10.1016/j.ijfatigue.2020.105697
    [20]
    KUNDU S, SIMON L C, FOWLER M, et al. Mechanical properties of Nafion (TM) electrolyte membranes under hydrated conditions[J]. Polymer,2005,46(25):11707-11715. doi: 10.1016/j.polymer.2005.09.059
    [21]
    BAO Y, MA J, LI N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel[J]. Carbohydrate Polymers,2011,84(1):76-82. doi: 10.1016/j.carbpol.2010.10.061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (1051) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return