Volume 39 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
XU Yidong, WANG Yao. Regulation mechanism of graphene oxide on creep of cement-based composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4839-4846. doi: 10.13801/j.cnki.fhclxb.20211101.004
Citation: XU Yidong, WANG Yao. Regulation mechanism of graphene oxide on creep of cement-based composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4839-4846. doi: 10.13801/j.cnki.fhclxb.20211101.004

Regulation mechanism of graphene oxide on creep of cement-based composites

doi: 10.13801/j.cnki.fhclxb.20211101.004
  • Received Date: 2021-09-09
  • Accepted Date: 2021-10-24
  • Rev Recd Date: 2021-10-10
  • Available Online: 2021-11-02
  • Publish Date: 2022-08-22
  • In order to explore the creep regulation mechanism of graphene oxide (GO) on cement-based composites, the creep of cement mortar with different GO contents was tested by using creep loading frame. Starting from the hydration and microstructure of cement-based composites, the effect of GO on the creep of cement mortar was studied by SEM, XRD and FTIR, and the regulation mechanism was explained. The results show that GO can regulate the shape and aggregation state of hydration products of cement-based composites and reduce macro creep. When the content (mass ratio to cement) of GO is greater than 0.02%, the creep of cement mortar is greatly reduced. The addition of GO promotes the adsorption and diffusion of water molecules by hydrated calcium silicate (CSH), increases the internal CSH content and makes the structure of hydration products more compact. The hydrogen bond formed by GO and CSH can enhance the bonding force between the two and enhance the adsorption of water molecules between the CSH-GO layers, thus realizing the regulation of creep of cement mortar. The results have important theoretical value for the design of cement-based composites according to end use, and are expected to be applied in prestressed concrete structures.

     

  • loading
  • [1]
    MALLICK S, ANOOP M B, RAO K B. Creep of cement paste containing fly ash—An investigation using microindentation technique[J]. Cement and Concrete Research,2019,121:21-36. doi: 10.1016/j.cemconres.2019.04.006
    [2]
    HUMAD A M, PROVIS J L, HABERMEHL-CWIRZEN K, et al. Creep and long-term properties of alkali-activated swedish-slag concrete[J]. Journal of Materials in Civil Engineering,2021,33(2):04020475. doi: 10.1061/(ASCE)MT.1943-5533.0003381
    [3]
    SIRTOLI D, WYRZYKOWSKI M, RIVA P, et al. Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement[J]. Cement and Concrete Composites,2019,98:61-73. doi: 10.1016/j.cemconcomp.2019.02.006
    [4]
    王玉清, 孙亮, 刘曙光, 等. 不同纤维掺量下聚乙烯醇纤维/水泥复合材料徐变性能试验[J]. 复合材料学报, 2020, 37(1):205-213. doi: 10.13801/j.cnki.fhclxb.20190425.002

    WANG Yuqing, SUN Liang, LIU Shuguang, et al. Experimental study on creep performance of polyvinyl alcohol fiber/engineered cementitious composite with different fiber contents[J]. Acta Materiae Compositae Sinica,2020,37(1):205-213(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190425.002
    [5]
    HU Z, HILAIRE A, STON J, et al. Intrinsic viscoelasticity of C-S-H assessed from basic creep of cement pastes[J]. Cement and Concrete Research,2019,121:11-20. doi: 10.1016/j.cemconres.2019.04.003
    [6]
    JENNINGS H M. A model for the microstructure of calcium silicate hydrate in cement paste[J]. Cement and Concrete Research,2000,30(1):101-116. doi: 10.1016/S0008-8846(99)00209-4
    [7]
    THOMAS J J, JENNINGS H M. A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste[J]. Cement and concrete research,2006,36(1):30-38. doi: 10.1016/j.cemconres.2004.10.022
    [8]
    JENNINGS H M. Refinements to colloid model of C-S-H in cement: CM-II[J]. Cement and Concrete Research,2008,38(3):275-289. doi: 10.1016/j.cemconres.2007.10.006
    [9]
    KAI M F, ZHANG L W, LIEW K M. New insights into creep characteristics of calcium silicate hydrates at molecular level[J]. Cement and Concrete Research,2021,142:106366. doi: 10.1016/j.cemconres.2021.106366
    [10]
    MALLICK S, ANOOP M B, RAO K B. Early age creep of cement paste—Governing mechanisms and role of water—A microindentation study[J]. Cement and Concrete Research,2019,116:284-298. doi: 10.1016/j.cemconres.2018.12.004
    [11]
    ZHAO L, GUO X, LIU Y, et al. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites[J]. Construction and Building Materials,2018,190:150-163. doi: 10.1016/j.conbuildmat.2018.09.105
    [12]
    INDUKURI C S R, NERELLA R. Enhanced transport properties of graphene oxide based cement composite material[J]. Journal of Building Engineering,2021,37:102174. doi: 10.1016/j.jobe.2021.102174
    [13]
    ANWAR A, MOHAMMED B S, WAHAB M A, et al. Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial-A review[J]. Developments in the Built Environment,2020,1:100002. doi: 10.1016/j.dibe.2019.100002
    [14]
    程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2):339-360. doi: 10.13801/j.cnki.fhclxb.20200902.001

    CHENG Zhihai, YANG Sen, YUAN Xiaoya. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Composites Sinica,2021,38(2):339-360(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200902.001
    [15]
    WEI Z, WANG Y, QI M, et al. The role of sucrose on enhancing properties of graphene oxide reinforced cement composites containing fly ash[J]. Construction and Building Materials,2021,293:123507. doi: 10.1016/j.conbuildmat.2021.123507
    [16]
    LV S H, DENG L J, YANG W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites[J]. Cement and Concrete Composites,2016,66:1-9. doi: 10.1016/j.cemconcomp.2015.11.007
    [17]
    LV S, MA Y, QIU C, et al. Regulation of GO on cement hydration crystals and its toughening effect[J]. Magazine of Concrete Research,2013,65(20):1246-1254. doi: 10.1680/macr.13.00190
    [18]
    雷斌, 邹俊, 饶春华, 等. 氧化石墨烯对再生混凝土改性试验研究[J]. 建筑结构学报, 2016, 37(S2):103-108. doi: 10.14006/j.jzjgxb.2016.s2.015

    LEI Bin, ZOU Jun, RAO Chunhua, et al. Experimental study on modification of recycled concrete with graphene oxide[J]. Journal of Building Structures,2016,37(S2):103-108(in Chinese). doi: 10.14006/j.jzjgxb.2016.s2.015
    [19]
    INDUKURI C S R, NERELLA R, MADDURU S R C. Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites[J]. Construction and Building Materials,2019,229:116863. doi: 10.1016/j.conbuildmat.2019.116863
    [20]
    PENG H, GE Y, CAI C S, et al. Mechanical properties and microstructure of graphene oxide cement-based composites[J]. Construction and Building Materials,2019,194:102-109. doi: 10.1016/j.conbuildmat.2018.10.234
    [21]
    LI X, WEI W, QIN H, et al. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement[J]. Journal of Physics and Chemistry of Solids,2015,85:39-43. doi: 10.1016/j.jpcs.2015.04.018
    [22]
    LU Z, YU J, YAO J, et al. Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide[J]. Cement and Concrete Composites,2020,112:103676. doi: 10.1016/j.cemconcomp.2020.103676
    [23]
    DU S, TANG Z, ZHONG J, et al. Effect of admixing graphene oxide on abrasion resistance of ordinary portland cement concrete[J]. AIP Advances,2019,9(10):105110. doi: 10.1063/1.5124388
    [24]
    王琴, 李时雨, 王健, 等. 氧化石墨烯对水泥水化进程及其主要水化产物的影响[J]. 硅酸盐学报, 2018, 46(2): 163-172.

    WANG Qin, LI Shiyu, WANG Jian, et al. Effect of graphene oxide on hydration process and main hydration products of cement[J]. Journal of the Chinese Ceramic Society, 2018, 46(2): 163-172(in Chinese).
    [25]
    LIN C, WEI W, HU Y H. Catalytic behavior of graphene oxide for cement hydration process[J]. Journal of Physics and Chemistry of Solids,2016,89:128-133. doi: 10.1016/j.jpcs.2015.11.002
    [26]
    CHEN Z, XU Y, HUA J, et al. Modeling shrinkage and creep for concrete with graphene oxide nanosheets[J]. Materials,2019,12(19):3153. doi: 10.3390/ma12193153
    [27]
    CHUAH S, LI W, CHEN S J, et al. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments[J]. Construction and Building Materials,2018,161:519-527. doi: 10.1016/j.conbuildmat.2017.11.154
    [28]
    赵庆新, 佟建楠, 孔才华, 等. 水泥净浆-砂浆-混凝土的徐变相关性[J]. 燕山大学学报, 2014, 38(1): 66-71.

    ZHAO Qingxin, TONG Jiannan, KONG Caihua, et al. Creep correlation of cement paste, mortar and concrete[J]. Jour-nal of Yanshan University, 2014, 38(1): 66-71(in Chinese).
    [29]
    国家技术质量监督局. 水泥胶砂强度检验方法(ISO法): GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    The State Bureau of Quality and Technical Supervision. Method of testing cements—Determination of strength: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [30]
    曾鞠庆, 徐亦冬, 潘志宏, 等. 氧化石墨烯水泥基复合材料的流动性、力学性能及其作用机理探究[J]. 江苏科技大学学报(自然科学版), 2019, 33(3): 126-130.

    ZENG Juqing, XU Yidong, PAN Zhihong, et al. Preparation and mechanism of graphite oxide reinforced cement based composites[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2019, 33(3): 126-130(in Chinese).
    [31]
    王瑶, 徐亦冬, 曾鞠庆, 等. 氧化石墨烯对水泥基复合材料自收缩的影响[J]. 功能材料, 2020, 51(3): 3108-3113.

    WANG Yao, XU Yidong, ZENG Juqing, et al. Influence of graphene oxide on autogenous shrinkage of cement-based composites[J]. Journal of Functional Materials, 2020, 51(3): 3108-3113(in Chinese).
    [32]
    黄国兴, 惠荣炎, 王秀军, 等. 混凝土徐变与收缩[M]. 北京: 中国电力出版社, 2012.

    HUANG Guoxing, HUI Rongyan, WANG Xiujun, et al. Creep and shrinkage of concrete[M]. Beijing: China Electric Power Press, 2012(in Chinese).
    [33]
    林宗寿, 邢伟宏, 陈伟, 等. 胶凝材料学[M]. 武汉: 武汉理工大学出版社, 2018.

    LIN Zongshou, XING Weihong, CHEN Wei, et al. Cementitious materials science[M]. Wuhan: Wuhan University of Technology Press, 2018(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1003) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return