Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LIU Yujia, YU Hao, ZOU Tianchun, et al. Effect of graphene nanosheets on the pore structure and compressive mechanical properties of aluminum-magnesium matrix composite foams[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5892-5901. doi: 10.13801/j.cnki.fhclxb.20221213.003
Citation: LIU Yujia, YU Hao, ZOU Tianchun, et al. Effect of graphene nanosheets on the pore structure and compressive mechanical properties of aluminum-magnesium matrix composite foams[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5892-5901. doi: 10.13801/j.cnki.fhclxb.20221213.003

Effect of graphene nanosheets on the pore structure and compressive mechanical properties of aluminum-magnesium matrix composite foams

doi: 10.13801/j.cnki.fhclxb.20221213.003
Funds:  Basic Research Funds for Central Universities, Special Project of Civil Aviation University of China (3122020083)
  • Received Date: 2022-10-21
  • Accepted Date: 2022-12-02
  • Rev Recd Date: 2022-12-01
  • Available Online: 2022-12-14
  • Publish Date: 2023-10-15
  • Graphene nanosheets (GNSs) reinforced Al-Mg matrix composite foams (G-AMCFs) were successfully prepared by ball milling and powder metallurgy foaming. The effects of GNSs on pore morphology, microstructure and quasi-static compressive mechanical properties of Al-Mg foams were studied. The results show that the addition of GNSs can increase pore nucleation sites and cause the segregation of MgO around the GNSs. With the increment of GNSs content, the pore size of G-AMCFs increases. The compressive mechanical properties of 0.25wt%G-AMCFs are the best. Compared with Al-Mg foams, the energy absorption capacity, yield strength and plateau stress of 0.25wt%G-AMCFs are increased by 43.6%, 42.9% and 28.1%, respectively. Meanwhile, 0.25wt%G-AMCFs show good ductile deformation behavior. The cell structure with high content of G-AMCFs (0.75wt%) deteriorates which leads to a decrease in mechanical properties, but the yield strength is still higher than that of Al-Mg foams. The enhancement mechanism of composite foams includes dispersion strengthening, load transfer and precipitation strengthening.

     

  • loading
  • [1]
    GARCÍA-MORENO F. Commercial applications of metal foams: Their properties and production[J]. Materials,2016,9(2):85. doi: 10.3390/ma9020085
    [2]
    杨旭东, 李宗岷, 杨昆明, 等. 碳纳米管增强铝基复合泡沫的阻尼性能[J]. 复合材料学报, 2019, 36(2):418-424. doi: 10.13801/j.cnki.fhclxb.20180416.003

    YANG Xudong, LI Zongmin, YANG Kunming, et al. Damping properties of Al matrix composite foams reinforced by carbon nanotubes[J]. Acta Materiae Compositae Sinica,2019,36(2):418-424(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180416.003
    [3]
    PATEL P, BHINGOLE P P, MAKWANA D. Manufacturing, characterization and applications of lightweight metallic foams for structural applications[J]. Materials Today: Proceedings,2018,5(9):20391-20402. doi: 10.1016/j.matpr.2018.06.414
    [4]
    YANG X D, HU Q, DU J, et al. Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method[J]. International Journal of Fatigue,2019,121:272-280. doi: 10.1016/j.ijfatigue.2018.11.008
    [5]
    DUARTE I, FERREIRA J M F. Composite and nanocomposite metal foams[J]. Materials,2016,9(2):79. doi: 10.3390/ma9020079
    [6]
    杨旭东, 毕智超, 陈亚军, 等. 泡沫铝基复合材料的研究进展[J]. 热加工工艺, 2015, 44(8):12-16. doi: 10.14158/j.cnki.1001-3814.2015.08.004

    YANG Xudong, BI Zhichao, CHEN Yajun, et al. Recent advances in aluminum matrix composite foam[J]. Hot Working Technology,2015,44(8):12-16(in Chinese). doi: 10.14158/j.cnki.1001-3814.2015.08.004
    [7]
    杨旭东, 郑远兴, 李威挺, 等. Si元素对碳纳米管增强铝基复合泡沫组织与性能的影响[J]. 复合材料学报, 2021, 38(1):186-197. doi: 10.13801/j.cnki.fhclxb.20200603.001

    YANG Xudong, ZHENG Yuanxing, LI Weiting, et al. Effect of Si on microstructure and properties of carbon nanotubes reinforced aluminum matrix composite foams[J]. Acta Materiae Compositae Sinica,2021,38(1):186-197(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200603.001
    [8]
    YANG X, XIE M, LI W, et al. Controllable design of structural and mechanical behaviors of Al-Si foams by powder metallurgy foaming[J]. Advanced Engineering Materials,2022,24(10):2200125. doi: 10.1002/adem.202200125
    [9]
    HUANG L, WANG H, YANG D H, et al. Effects of scandium additions on mechanical properties of cellular Al-based foams[J]. Intermetallics,2012,28:71-76. doi: 10.1016/j.intermet.2012.03.050
    [10]
    WANG H, ZHU D F, HOU S, et al. Cellular structure and energy absorption of AlCu alloy foams fabricated via a two-step foaming method[J]. Materials & Design,2020,196:109090.
    [11]
    MIYOSHI T, HARA S, MUKAI T, et al. Development of a closed cell aluminum alloy foam with enhancement of the compressive strength[J]. Materials Transactions,2001,42(10):2118-2123. doi: 10.2320/matertrans.42.2118
    [12]
    MIYOSHI T, NISHI S, FURUTA S, et al. Current activities and new technologies of aluminium foam by melt route[C]//Proceedings of the 4th International Conference on Porous Metals and Metal Foaming Technology (MetFoam 2005). Kyoto: The Japan Institute of Metals, 2005: 21-23.
    [13]
    YU H, YANG X, LI W, et al. Toughening effects through optimizing cell structure and deformation behaviors of Al-Mg foams[J]. Acta Metallurgica Sinica (English Letters),2022,35(12):2014-2026. doi: 10.1007/s40195-022-01432-4
    [14]
    BHOGI S, MUDULI B, MUKHERJEE M. Effect of Mg addition on the structure and properties of Al-TiB2 foams[J]. Materials Science and Engineering: A,2020,791:139581. doi: 10.1016/j.msea.2020.139581
    [15]
    ZHONG W, HOOSHMAND M S, GHAZISAEIDI M, et al. An integrated experimental and computational study of diffusion and atomic mobility of the aluminum-magnesium system[J]. Acta Materialia,2020,189:214-231. doi: 10.1016/j.actamat.2019.12.054
    [16]
    GOKHALE A A, SAHU S N, KULKARNI V K, et al. Materials issues in foaming of liquid aluminium[C]//Proceedings of the 4th International Conference on Porous Metals and Metal Foaming Technology (MetFoam2005). Kyoto: The Japan Institute of Metals, 2005: 95-100.
    [17]
    SUZUKI S, MURAKAMI H, KADOI K, et al. Aluminum foam fabrication through the melt route by adding Mg and Bi[C]//Proceedings of the 7th International Conference on Porous Metals and Metallic Foams (MetFoam2011). Busan: GS Intervision, 2011: 18-21.
    [18]
    OVEISI H, GERAMIPOUR T. High mechanical performance alumina-reinforced aluminum nanocomposite metal foam produced by powder metallurgy: Fabrication, microstructure characterization, and mechanical properties[J]. Materials Research Express,2020,6(12):1250c2. doi: 10.1088/2053-1591/ab608b
    [19]
    DAS S, RAJAK D K, KHANNA S, et al. Energy absorption behavior of Al-SiC-graphene composite foam under a high strain rate[J]. Materials,2020,13(3):783. doi: 10.3390/ma13030783
    [20]
    GUO C, ZOU T, SHI C, et al. Compressive properties and energy absorption of aluminum composite foams reinforced by in situ generated MgAl2O4 whiskers[J]. Materials Science and Engineering: A,2015,645:1-7. doi: 10.1016/j.msea.2015.07.091
    [21]
    LIN Y, ZHANG Q, MA X, et al. Mechanical behavior of pure Al and Al-Mg syntactic foam composites containing glass cenospheres[J]. Composites Part A: Applied Science and Manufacturing,2016,87:194-202. doi: 10.1016/j.compositesa.2016.05.001
    [22]
    LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [23]
    AN Y, YANG S, WU H, et al. Investigating the internal structure and mechanical properties of graphene nanoflakes enhanced aluminum foam[J]. Materials & Design,2017,134:44-53.
    [24]
    LI W, YANG X, YANG K, et al. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets[J]. Journal of Materials Science & Technology,2022,101:60-70.
    [25]
    ESAWI A, MORSI K. Dispersion of carbon nanotubes (CNTs) in aluminum powder[J]. Composites Part A: Applied Science and Manufacturing,2007,38(2):646-650. doi: 10.1016/j.compositesa.2006.04.006
    [26]
    KUMAR G S V, GARCÍA-MORENO F, BANHART J, et al. The stabilising effect of oxides in foamed aluminium alloy scrap[J]. International Journal of Materials Research,2015,106(9):978-987. doi: 10.3139/146.111255
    [27]
    ZHANG Y, LI X. Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness[J]. Nano Letters,2017,17(11):6907-6915. doi: 10.1021/acs.nanolett.7b03308
    [28]
    LI W, YANG X, HE C, et al. Compressive responses and strengthening mechanisms of aluminum composite foams reinforced with graphene nanosheets[J]. Carbon,2019,153:396-406. doi: 10.1016/j.carbon.2019.07.043
    [29]
    FISHKIS M. Interfaces and fracture surfaces in Saffil/Al-Mg-Cu metal-matrix composites[J]. Journal of Materials Science,1991,26(10):2651-2661. doi: 10.1007/BF02387733
    [30]
    KÖRNER C, ARNOLD M, SINGER R F. Metal foam stabilization by oxide network particles[J]. Materials Science and Engineering: A,2005,396(1):28-40.
    [31]
    RIO E, DRENCKHAN W, SALONEN A, et al. Unusually stable liquid foams[J]. Advances in Colloid and Interface Science,2014,205:74-86. doi: 10.1016/j.cis.2013.10.023
    [32]
    中国国家标准化管理委员会. 金属材料 延性试验 多孔状和蜂窝状金属压缩试验方法: GB/T 31930—2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People's Republic of China. Metallic meterials—Ductility testing—Compression test for porous and cellular metals: GB/T 31930—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [33]
    MARKAKI A E, CLYNE T W. The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams[J]. Acta Materialia,2001,49(9):1677-1686. doi: 10.1016/S1359-6454(01)00072-6
    [34]
    JIANG Y, TAN Z, FAN G, et al. Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/ Al composites[J]. Carbon,2020,161:17-24. doi: 10.1016/j.carbon.2020.01.032
    [35]
    YU Z, YANG W, ZHOU C, et al. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method[J]. Carbon,2019,141:25-39. doi: 10.1016/j.carbon.2018.09.041
    [36]
    HUANG L, JIANG L, TOPPING T D, et al. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure[J]. Acta Materialia,2017,122:19-31. doi: 10.1016/j.actamat.2016.09.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (490) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return