Volume 41 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
LI Shijia, PANG Ernan. CDs/CeVO4 nanohybrids synergistic visible light for activation of peroxymonosulfate toward tetracycline degradation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5326-5335.
Citation: LI Shijia, PANG Ernan. CDs/CeVO4 nanohybrids synergistic visible light for activation of peroxymonosulfate toward tetracycline degradation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5326-5335.

CDs/CeVO4 nanohybrids synergistic visible light for activation of peroxymonosulfate toward tetracycline degradation

Funds:  Science and Technology Innovation Fund of Shanxi Vocational University of Engineering Science and Technology (NO.202229)
  • Received Date: 2024-04-29
  • Accepted Date: 2024-06-08
  • Rev Recd Date: 2024-05-27
  • Available Online: 2024-06-25
  • Publish Date: 2024-10-15
  • The limited absorption of visible light and high recombination rate of photogenerated electron-hole pairs impede the practical application of CeVO4 in photocatalysis. The unique π-conjugated structure of carbon dots(CDs) endows them with exceptional capabilities for the storing and transferring photogenerated electrons. Herein, CDs/CeVO4 was successfully synthesized by two-step method of hydrothermal and co-precipitation, resulting in a significant enhancement of photogenerated carrier transfer and separation efficiency with the incorporation of CDs. Under visible light irradiation, CDs/CeVO4 exhibit enhanced activity towards PMS for the degradation of tetracycline hydrochloride(TC), resulting in a 90 % degradation rate of TC after 60 minutes of reaction. The reaction rate constant is 4.1 times higher than that of CeVO4. XPS, UV-Vis DRS, and time-resolved fluorescence spectra demonstrate that CDs/CeVO4 exhibits a narrower band gap, an enhanced capacity for absorbing visible light, and a 15.1-fold increase in the fluorescence lifetime compared to CeVO4. The results of EPR and XPS tests confirm the presence of abundant oxygen vacancies in CDs/CeVO4, thereby further enhancing their capacity for activating PMS. Capture experiments of active substances show that h+、SO4·−和·OH are the active species in the reaction system, and a plausible degradation mechanism was proposed. After five cycles of experiments, the degradation rate decrease slightly, showing good photocatalytic performance. This work provide a new strategy for the degradation of organic pollutants in wastewater.

     

  • loading
  • [1]
    OYEKUNLE D T, GENDY E A, IFTHIKAR J, et al. Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: A review[J]. Chemical Engineering Journal, 2022, 437: 135277. doi: 10.1016/j.cej.2022.135277
    [2]
    WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [3]
    WACŁAWEK S, LUTZE H V, GRüBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 330: 44-62. doi: 10.1016/j.cej.2017.07.132
    [4]
    NORZAEE S, TAGHAVI M, DJAHED B, et al. Degradation of Penicillin G by heat activated persulfate in aqueous solution[J]. Journal of Environmental Management, 2018, 215: 316-323.
    [5]
    PAN Y, ZHANG Y, ZHOU M, et al. Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized Fe0[J]. Chemical Engineering Journal, 2019, 361: 908-918. doi: 10.1016/j.cej.2018.12.135
    [6]
    ZHANG T T, YANG Y L, LI X, et al. Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation[J]. Separation and Purification Technology, 2020, 239: 116537. doi: 10.1016/j.seppur.2020.116537
    [7]
    TIAN D Q, ZHOU H Y, ZHANG H, et al. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies[J]. Chemical Engineering Journal, 2022, 428: 131166. doi: 10.1016/j.cej.2021.131166
    [8]
    LIU J J, HE H, SHEN Z R, et al. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: Process and mechanism[J]. Journal of Hazardous Materials, 2022, 429: 128398. doi: 10.1016/j.jhazmat.2022.128398
    [9]
    YANG J L, ZHU M S, DIONYSIOU D D. What is the role of light in persulfate-based advanced oxidation for water treatment?[J]. Water Research, 2021, 189: 116627. doi: 10.1016/j.watres.2020.116627
    [10]
    MING H B, WEI D L, YANG Y, et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation[J]. Chemical Engineering Journal, 2021, 424: 130296. doi: 10.1016/j.cej.2021.130296
    [11]
    XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2018, 229: 96-104. doi: 10.1016/j.apcatb.2018.02.011
    [12]
    CHEN G L, SI X L, YU J S, et al. Doping nano-Co3O4 surface with bigger nanosized Ag and its photocatalytic properties for visible light photodegradation of organic dyes[J]. Applied Surface Science, 2015, 330: 191-199. doi: 10.1016/j.apsusc.2015.01.011
    [13]
    LI J N, LI X Y, WANG X, et al. Multiple regulations of Mn-based oxides in boosting peroxymonosulfate activation for norfloxacin removal[J]. Applied Catalysis A: General, 2019, 584: 117170. doi: 10.1016/j.apcata.2019.117170
    [14]
    YIN C, LIU Y L, LV X Y, et al. Carbon dots as heterojunction transport mediators effectively enhance BiOI/g-C3N4 synergistic persulfate degradation of antibiotics[J]. Applied Surface Science, 2022, 601: 154249. doi: 10.1016/j.apsusc.2022.154249
    [15]
    LIU X, YANG Y, LI H, et al. Visible light degradation of tetracycline using oxygen-rich titanium dioxide nanosheets decorated by carbon quantum dots[J]. Chemical Engineering Journal, 2021, 408: 127259. doi: 10.1016/j.cej.2020.127259
    [16]
    YOU Q L, ZHANG Q X, GU M B, et al. Self-assembled graphitic carbon nitride regulated by carbon quantum dots with optimized electronic band structure for enhanced photocatalytic degradation of diclofenac[J]. Chemical Engineering Journal, 2022, 431: 133927. doi: 10.1016/j.cej.2021.133927
    [17]
    HAN W Y, LI D G, ZHANG M Q, et al. Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots[J]. Journal of Hazardous Materials, 2020, 395: 122695. doi: 10.1016/j.jhazmat.2020.122695
    [18]
    SONG Y, WANG R, LI X Y, et al. Constructing a novel Ag nanowire@CeVO4 heterostructure photocatalyst for promoting charge separation and sunlight driven photodegradation of organic pollutants[J]. Chinese Chemical Letters, 2022, 33(3): 1283-1287. doi: 10.1016/j.cclet.2021.07.060
    [19]
    ZHANG L J, HAO X Q, LI J K, et al. Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution[J]. Chinese Journal of Catalysis, 2020, 41(1): 82-94. doi: 10.1016/S1872-2067(19)63454-6
    [20]
    CHANG M Y, WANG M F, CHEN Y Q, et al. Self-assembled CeVO4/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance[J]. Nanoscale, 2019, 11(20): 10129-10136. doi: 10.1039/C9NR02412C
    [21]
    OTHMAN I, HISHAM ZAIN J, ABU HAIJA M, et al. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway[J]. Applied Catalysis B: Environmental, 2020, 266: 118601. doi: 10.1016/j.apcatb.2020.118601
    [22]
    HUANG J H, ZHU B K, SONG D B, et al. Synergistic photocatalysis for naphthalene (NAP) removal in seawater by S-scheme heterojunction Bi2S3/CeVO4: Mechanistic investigation and degradation pathways[J]. Chemical Engineering Journal, 2023, 464: 142784. doi: 10.1016/j.cej.2023.142784
    [23]
    ZHANG Y Y, LI Y, YUAN Y, et al. C-dots decorated SrTiO3/NH4V4O10 Z-scheme heterojunction for sustainable antibiotics removal: Reaction kinetics, DFT calculation and mechanism insight[J]. Separation and Purification Technology, 2022, 295: 121268. doi: 10.1016/j.seppur.2022.121268
    [24]
    LI Q, REN J, HAO Y J, et al. Insight into reactive species-dependent photocatalytic toluene mineralization and deactivation pathways via modifying hydroxyl groups and oxygen vacancies on BiOCl[J]. Applied Catalysis B: Environmental, 2022, 317: 121761. doi: 10.1016/j.apcatb.2022.121761
    [25]
    MING H B, WEI D L, YANG Y, et al. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation[J]. Chemical Engineering Journal, 2021, 424: 130296. doi: 10.1016/j.cej.2021.130296
    [26]
    LI Q S, LU H, WANG X L, et al. Visible-light-driven N and Fe co-doped carbon dots for peroxymonosulfate activation and highly efficient aminopyrine photodegradation[J]. Chemical Engineering Journal, 2022, 443: 136473. doi: 10.1016/j.cej.2022.136473
    [27]
    GHOSH U, PAL A. Insight into the multiple roles of nitrogen doped carbon quantum dots in an ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination[J]. Chemical Engineering Journal, 2022, 431: 133914. doi: 10.1016/j.cej.2021.133914
    [28]
    郝彩红, 杨泽鹏, 常青, 等. 碳点/g-C3N4复合催化剂的制备及其光催化性能[J]. 复合材料学报, 2023, 40(10): 5811-5819.

    HAO C H, YANG Z P, CHANG Q, et al. Preparation and photocatalytic performance of carbon dots/g-C3N4 composite catalyst[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5811-5819(in Chinese).
    [29]
    夏慧芸, 燕敏杰, 吕昕, 等. 隧道内壁耐久型CQDs@TiO2自洁净光催化涂层的制备与性能[J]. 复合材料学报, 2023, 40(10): 5782-5791.

    XIA H Y, YAN M J, LV X, et al. Preparation and properties of CQDs@TiO2 based durable self-cleaning photocatalytic coating for tunnel wall[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5782-5791(in Chinese).
    [30]
    LEELADEVI K, ARUNPANDIAN M, KUMAR J V, et al. Fabrication of 3D pebble-like CeVO4/g-C3N4 nanocomposite: a visible light-driven photocatalyst for mitigation of organic pollutants[J]. Diamond and Related Materials, 2021, 116(108424): 108424.
    [31]
    FAN C, LIU Q Q, MA T D, et al. Fabrication of 3D CeVO4 /graphene aerogels with efficient visible-light photocatalytic activity[J]. Ceramics International, 2016, 42(8): 10487-10492. doi: 10.1016/j.ceramint.2016.03.072
    [32]
    ZHU Y M, ZHANG L, ZHAO B T, et al. Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides[J]. Advanced Functional Materials, 2019, 29(34): 1901783. doi: 10.1002/adfm.201901783
    [33]
    ZHANG B B, WANG L, ZHANG Y J, et al. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation[J]. Angewandte Chemie international Edition, 2018, 57(8): 2248-2252. doi: 10.1002/anie.201712499
    [34]
    CHEN F, MA Z Y, YE L Q, et al. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals[J]. Advanced Materials, 2020, 32(11): 1908350. doi: 10.1002/adma.201908350
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (46) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return