Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
YU Xingchen, NI Aiqing, LI Xiaoyang, et al. Establishment of hyperelastic parameters and structural finite element simulation based on uniaxial tensile for silicone gel[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 823-833. doi: 10.13801/j.cnki.fhclxb.20210420.002
Citation: YU Xingchen, NI Aiqing, LI Xiaoyang, et al. Establishment of hyperelastic parameters and structural finite element simulation based on uniaxial tensile for silicone gel[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 823-833. doi: 10.13801/j.cnki.fhclxb.20210420.002

Establishment of hyperelastic parameters and structural finite element simulation based on uniaxial tensile for silicone gel

doi: 10.13801/j.cnki.fhclxb.20210420.002
  • Received Date: 2021-02-05
  • Accepted Date: 2021-04-12
  • Rev Recd Date: 2021-03-29
  • Available Online: 2021-04-20
  • Publish Date: 2022-02-01
  • To investigate the hyperelasticity of silicone gel, its mechanical properties were characterized by uniaxial tensile (UT) test in the temperature from −30℃ to 30℃. The stress-strain curves of silicone gel at different temperatures were obtained and found that the initial elastic modulus of silicone gel is positively correlated with temperature from −30℃ to 0℃ and negatively correlated with temperature from 0℃ to 30℃. According to UT experimental data, the selection strategies and parameter determination methods of in-built hyperelastic constitutive equations (Neo Hookean, Mooney-Rivlin, Yeoh, Arruda-Boyce, etc.) were discussed in the finite element simulation. Then based on the selected Neo Hookean model, a temperature-dependent hyperelastic constitutive model was established to describe the stress-strain response of silicone gel over a wide temperature range. The temperature-dependent model was written using UHYPER subroutine of ABAQUS. In combination with fiber Bragg grating (FBG) monitoring technology, numerical simulation and experimental monitoring of silicone gel for typical encapsulation structures were carried out during high-low temperature cycles between −30℃ and 30℃. The strain results at the observation points show that the final error between experimental measurement and numerical prediction is 7%, revealing the validity of the hyperelastic constitutive equation derived in this paper and its value in practical application.

     

  • loading
  • [1]
    幸松民, 王一璐. 有机硅合成工艺及产品应用[M]. 北京: 化学工业出版社, 2000: 614-663.

    XING Songmin, WANG Yilu. Silicone synthesis process and product application[M]. Beijing: Chemical Industry Press, 2000: 614-663(in Chinese).
    [2]
    王佐, 程宪涛, 吴向荣. 动力电池箱体密封用硅凝胶的研制[J]. 有机硅材料, 2019, 33(4):287-291.

    WANG Zuo, CHENG Xiantao, WU Xiangrong. Development of silicone gel for power battery case[J]. Silicone Material,2019,33(4):287-291(in Chinese).
    [3]
    YAO Y, LU G, BOROYEVICH D, et al. Survey of high-temperature polymeric encapsulants for power electronics packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2015,5(2):168-181. doi: 10.1109/TCPMT.2014.2337300
    [4]
    何泱, 耿力东, 冯传均, 等. 基于低压直流供电的100 kV重频高压电源[J]. 高电压技术, 2018, 44(9):3028-3034.

    HE Yang, GENG Lidong, FENG Chuanjun, et al. 100 kV repetitive high-voltage power supply based on low voltage DC input[J]. High Voltage Engineering,2018,44(9):3028-3034(in Chinese).
    [5]
    LI-TSANG C W P, LAU J C M, CHOI J, et al. A prospective randomized clinical trial to investigate the effect of silicone gel sheeting (Cica-Care) on post-traumatic hypertrophic scar among the Chinese population[J]. Burns,2006,32(6):678-683. doi: 10.1016/j.burns.2006.01.016
    [6]
    SONG T, KIM K H, LEE K W. Randomised comparison of silicone gel and onion extract gel for post-surgical scars[J]. Journal of Obstetrics and Gynaecology,2018,38(5):702-707. doi: 10.1080/01443615.2017.1400524
    [7]
    SCHNEIDER F A, FELLNER T B, WILDE J B, et al. Mechanical properties of silicones for MEMS[J]. Journal of Micromechanics& Microengineering,2008,18(6):065008.
    [8]
    LI H, LI Y, LAI X, et al. Investigation of ureido-attached vinyl MQ silicone resin on tracking and erosion resistance of addition-cure liquid silicone rubber[J]. Journal of Applied Polymer Science,2019,136(15):47360. doi: 10.1002/app.47360
    [9]
    迟庆国, 李振, 张天栋, 等. 钛酸铜钙纳米纤维/液体硅橡胶复合介质非线性电导性能[J]. 复合材料学报, 2019, 36(10):2247-2258.

    CHI Qingguo, LI Zhen, ZHANG Tiandong, et al. Nonlinear conductivity of copper calcium titanate nanofibers/liquid silicone rubber composite[J]. Acta Materiae Compositae Sinica,2019,36(10):2247-2258(in Chinese).
    [10]
    尚南强, 陈庆国, 秦君. 纳米TiO2/液体硅橡胶直流电缆附件绝缘复合材料的介电性能[J]. 复合材料学报, 2019, 36(1):104-113.

    SHANG Nanqiang, CHEN Qingguo, QIN Jun. Dielectric properties of nano TiO2/liquid silicone rubber composites for direct current cable accessories insulation[J]. Acta Materiae Compositae Sinica,2019,36(1):104-113(in Chinese).
    [11]
    XIE C, LAI X, LI H, et al. Improvement of fluorosilicone resin on the tracking resistance of addition-cure liquid silicone rubber[J]. Journal of macromolecular science Part A, Pure and Applied Chemistry,2020,57(10):1-9.
    [12]
    OU Z, GAO F, ZHAO H, et al. Research on the thermal conductivity and dielectric properties of AlN and BN co-filled addition-cure liquid silicone rubber composites[J]. RSC Advances,2019,9(49):28851-28856. doi: 10.1039/C9RA04771A
    [13]
    FANG W, LAI X, LI H, et al. Effect of urea-containing anti-tracking additive on the tracking and erosion resistance of addition-cure liquid silicone rubber[J]. Polymer Testing,2014,37:19-27. doi: 10.1016/j.polymertesting.2014.04.007
    [14]
    WANG J, CHEN Y, JIN Q. A novel reinforcing filler: Application to addition-type liquid silicone rubber adhesive system[J]. Journal of Adhesion Science and Technology,2006,20(2-3):261-276. doi: 10.1163/156856106775897784
    [15]
    HUANG B, DAI L, CHEN Z, et al. Role of in-situ polymethyl-methacrylate in addition type silicone rubber with specific reference to adhesion and damping properties[J]. Journal of Applied Polymer Science,2021,138(16):50252. doi: 10.1002/app.50252
    [16]
    谭必恩, 张廉正, 郝志刚, 等. 加成型硅橡胶的制备及性能[J]. 高分子材料科学与工程, 2002, 18(2):180-182. doi: 10.3321/j.issn:1000-7555.2002.02.044

    TAN Bien, ZHANG Lianzheng, HAO Zhigang, et al. Preparation of addition type silicone rubber and its property[J]. Polymer Materials Science & Engineering,2002,18(2):180-182(in Chinese). doi: 10.3321/j.issn:1000-7555.2002.02.044
    [17]
    冯传均, 王传伟, 戴文峰, 等. 高压模块的有机硅凝胶灌封工艺设计与改进[J]. 电子工艺技术, 2015, 36(1):51-54.

    FENG Chuanjun, WANG Chuanwei, DAI Weifeng, et al. Silicone gel encapsulation process design and improvement of high-voltage module[J]. Electronics Process Technology,2015,36(1):51-54(in Chinese).
    [18]
    罗刚. 电子器件灌封材料的现状及发展趋势[J]. 实验科学与技术, 2010(3):20-22. doi: 10.3969/j.issn.1672-4550.2010.03.008

    LUO Gang. Present situation and development trend of potting materials using in electron device[J]. Experiment Science and Technology,2010(3):20-22(in Chinese). doi: 10.3969/j.issn.1672-4550.2010.03.008
    [19]
    康峻铭, 孙亮亮, 王继辉, 等. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.

    KANG Junming, SUN Liangliang, WANG Jihui, et al. Three-dimensional finite element simulation of temperature and strain in epoxy resin used to electronic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese).
    [20]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2005(in Chinese).
    [21]
    LION A. On the large deformation behaviour of reinforced rubber at different temperatures[J]. Journal of the Mechanics & Physics of Solids,1997,45(11-12):1805-1834.
    [22]
    RIVLIN R S. Large elastic deformations of isotropic materials. IV. Further developments of the general theory[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences,1948,241(835):379-397.
    [23]
    MARCKMANN G, VERRON E. Comparison of hyperelastic models for rubber-like materials[J]. Rubber Chemistry & Technology,2008,79(5):835-858.
    [24]
    MOONEY M. A theory of large elastic deformation[J]. Journal of Applied Physics,1940,11(9):582-592. doi: 10.1063/1.1712836
    [25]
    OGDEN R W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,1972,328(1575):567-583.
    [26]
    YEOH O H. Some forms of the strain energy function for rubber[J]. Rubber Chemistry & Technology,1993,66(5):754-771.
    [27]
    GENT A N. A new constitutive relation for rubber[J]. Rubber Chemistry & Technology,1996,69(1):59-61.
    [28]
    FU X, WANG Z, MA L, et al. Temperature-dependence of rubber hyperelasticity based on the eight-chain model[J]. Polymers,2020,12(4):932-946.
    [29]
    GIORDANO M, LAUDATI A, NASSER J, et al. Monitoring by a single fiber Bragg grating of the process induced chemo-physical transformations of a model thermoset[J]. Sensors and Actuators A: Physical,2004,113(2):166-173. doi: 10.1016/j.sna.2004.02.033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (1178) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return