Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
MA Jinhuan, WEI Zhiqiang, DING Meijie, et al. Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under simulate visible light[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5820-5829. doi: 10.13801/j.cnki.fhclxb.20221226.002
Citation: MA Jinhuan, WEI Zhiqiang, DING Meijie, et al. Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under simulate visible light[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5820-5829. doi: 10.13801/j.cnki.fhclxb.20221226.002

Preparation of g-C3N4/FeOCl composite and its photo-Fenton degradation property for RhB under simulate visible light

doi: 10.13801/j.cnki.fhclxb.20221226.002
Funds:  National Natural Science Foundation of China (52268042); Natural Science Foundation of Gansu Province (22JR5RA253); HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology
  • Received Date: 2022-10-24
  • Accepted Date: 2022-12-10
  • Rev Recd Date: 2022-12-08
  • Available Online: 2022-12-26
  • Publish Date: 2023-10-15
  • In order to study the photo-Fenton properties of FeOCl combined with carbon materials, g-C3N4/FeOCl nanocomposites were prepared by a simple calcination method according to the different composite mass ratios of g-C3N4 and FeCl3·6H2O. Composition, structure, and optical properties of the composite samples tested by XRD, SEM, TEM, XPS, UV-vis DRS, EIS, and transient photocurrent testing. The results show that the g-C3N4/FeOCl composite has a layered nanorod stacking structure with the good light response and carrier separation capability. When the composite ratio of g-C3N4 to FeCl3·6H2O is 1∶20, it exhibits excellent photo-Fenton performance, and the degradation rate of rhodamine B (RhB) reaches 92.4%. And after three cycles, the efficiency of the composite material in degrading RhB remains at 80.1% that showing good stability. Based on the experimental results, the Z-type heterojunction between g-C3N4 and FeOCl was proposed to improve the separation efficiency of photogenerated carriers, and the possible mechanism of photo-Fenton degradation of RhB by Z-type heterojunction was discussed.

     

  • loading
  • [1]
    MA J H, WEI Z Q, LI L, et al. Synthesis and photoelectrochemical properties of visible-light response g-C3N4@CdS heterojunctions photocatalyst[J]. Desalination and Water Treatment,2021,231:287-296. doi: 10.5004/dwt.2021.27488
    [2]
    LI C, WEI Z Q, CHEN Y R, et al. Photo-electrochemical and enhanced photocatalytic activity of CdS/rGO nanocomposites prepared by hydrothermal method[J]. Journal of Materials Science: Materials in Electronics,2021,32(17):22093-22105. doi: 10.1007/s10854-021-06679-8
    [3]
    AMOR C, DE TORRES-SOCÍAS E, PERES J A, et al. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes[J]. Journal of Hazardous Materials,2015,286:261-268. doi: 10.1016/j.jhazmat.2014.12.036
    [4]
    WEI Z Q, HUANG S P, ZHANG X D, et al. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2020,31(7):5176-5186. doi: 10.1007/s10854-020-03077-4
    [5]
    ZHU Y F, MA S C, YANG Y, et al. Direct Z-scheme Fe2(MoO4)3/MoO3 heterojunction: Photo-Fenton reaction and mechanism comprehension[J]. Journal of Alloys and Compounds,2021,873:3549-3558.
    [6]
    YAO T J, JIA W J, FENG Y, et al. Preparation of reduced graphene oxide nanosheet/FexOy/nitrogen-doped carbon layer aerogel as photo-Fenton catalyst with enhanced degradation activity and reusability[J]. Journal of Hazardous Materials,2019,362:62-71. doi: 10.1016/j.jhazmat.2018.08.084
    [7]
    QU S Y, WANG W H, PAN X Y, et al. Improving the Fenton catalytic performance of FeOCl using an electron mediator[J]. Journal of Hazardous Materials,2020,384:676-686.
    [8]
    PAN X Y, FAN X K, LIANG A P, et al. Electron-rich CNTs modified FeOCl/Fe2O3 with improved Fenton catalytic performance[J]. Composites Communications,2021,27:133324.
    [9]
    范德锴, 吴志园, 吴怀欣, 等. FeOCl-COF的制备及其在非均相芬顿反应中的应用[J]. 化学试剂, 2021, 43(12):1651-1656.

    FAN Dekai, WU Zhiyuan, WU Huaixin, et al. Preparation of FeOCl-COF and its application in heterogeneous Fenton reaction[J]. Chemical Reagents,2021,43(12):1651-1656(in Chinese).
    [10]
    MA Y P, WANG J D, ZHANG X J, et al. Enhancement of Hg0 oxidation removal in chloride-free flue gas over FeOCl-modified commercial selective catalytic reduction catalyst[J]. Colloid and Interface Science Communications,2021,44:100472. doi: 10.1016/j.colcom.2021.100472
    [11]
    QU S Y, LI C L, SUN X, et al. Enhancement of peroxymonosulfate activation and utilization efficiency via iron oxychloride nanosheets in visible light[J]. Separation and Purification Technology,2019,224:132-141. doi: 10.1016/j.seppur.2019.04.084
    [12]
    SUN M, CHU C H, GENG F L, et al. Reinventing Fenton chemistry: Iron oxychloride nanosheet for pH-insensitive H2O2 activation[J]. Environmental Science & Technology Letters,2018,5(3):186-191.
    [13]
    SABRI M, HABIBI-YANGJEH A, CHAND H, et al. Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: Facile synthesis and high photocatalytic performance[J]. Separation and Purification Technology,2020,250:4230-4235.
    [14]
    王金岭, 温玉真, 汪华林, 等. FeOCl层状材料及其插层化合物: 结构、性质与应用[J]. 化学进展, 2021, 33(2):263-280.

    WANG Jinling, WEN Yuzhen, WANG Hualin, et al. FeOCl and its intercalation compounds: Structures, properties and applications[J]. Progress in Chemistry,2021,33(2):263-280(in Chinese).
    [15]
    LUO H W, ZENG Y F, CHENG Y, et al. Activation of peroxymonosulfate by iron oxychloride with hydroxylamine for ciprofloxacin degradation and bacterial disinfection[J]. Science of the Total Environment,2021,799:4704-4718.
    [16]
    YANG X J, XU X M, XU X C, et al. Modeling and kinetics study of Bisphenol A (BPA) degradation over an FeOCl/SiO2 Fenton-like catalyst[J]. Catalysis Today,2016,276:85-96. doi: 10.1016/j.cattod.2016.01.002
    [17]
    LIU X, ZHANG W Y, MAO L Q, et al. Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange[J]. Journal of Materials Science,2021,56(11):6704-6718. doi: 10.1007/s10853-020-05715-y
    [18]
    LI D Y, XIAO Y, PU M J, et al. A metal-free protonated g-C3N4 as an effective sodium percarbonate activator at ambient pH conditions: Efficiency, stability and mechanism[J]. Materials Chemistry and Physics,2019,231:225-232. doi: 10.1016/j.matchemphys.2019.04.016
    [19]
    JIANG S Y, ZHENG H A, SUN X, et al. New and highly efficient ultra-thin g-C3N4/FeOCl nanocomposites as photo-Fenton catalysts for pollutants degradation and antibacterial effect under visible light[J]. Chemosphere,2022,290:117268.
    [20]
    ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, SEIFZADEH D, et al. Visible-light-activated g-C3N4 nanosheet/carbon dot/FeOCl nanocomposites: Photodegradation of dye pollutants and tetracycline hydrochloride[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,617:538-549.
    [21]
    QU L H, DENG Z Y, YU J, et al. Mechanical and electronic properties of graphitic carbon nitride (g-C3N4) under biaxial[J]. Vacuum,2020,176:18-25.
    [22]
    LI X R, DAI Y, MA Y D, et al. Graphene/ g-C3N4 bilayer: Considerable band gap opening and effective band structure engineering[J]. Physical Chemistry Chemical Physics,2014,16(9):4230-4235. doi: 10.1039/c3cp54592j
    [23]
    ZENG H M, LIU Y L, XU Z G, et al. Construction of a Z-scheme g-C3N4/Ag/AgI heterojunction for highly selective photoelectrochemical detection of hydrogen sulfide[J]. Chemical Communications,2019,55(79):11940-11943. doi: 10.1039/C9CC05356E
    [24]
    黄腾腾, 陈媛媛, 乔嘉伟, 等. 层状化合物FeOCl光催化材料的制备及改性研究[J]. 应用化工, 2020, 49(7):1772-1775. doi: 10.3969/j.issn.1671-3206.2020.07.039

    HUANG Tengteng, CHEN Yuanyuan, QIAO Jiawei, et al. Study on preparation and modification of layered compound FeOCl photocatalytic materials[J]. Applied Chemical Industy,2020,49(7):1772-1775(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.07.039
    [25]
    NGUYEN V H, MOUSAVI M, GHASEMI J B, et al. In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity[J]. Journal of Colloid and Interface Science,2021,587:538-549. doi: 10.1016/j.jcis.2020.11.011
    [26]
    LUO J M, SUN M, RITT C L, et al. Tuning Pb(II) adsorption from aqueous solutions on ultrathin iron oxychloride (FeOCl) nanosheets[J]. Environmental Science & Technology,2019,53(4):2075-2085.
    [27]
    MA J Q, YANG Q F, WEN Y Z, et al. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B: Environmental,2017,201:232-240. doi: 10.1016/j.apcatb.2016.08.048
    [28]
    ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, SEIFZADEH D. Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: Boosting visible-light-driven photocatalytic activity[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,87:98-111. doi: 10.1016/j.jtice.2018.03.017
    [29]
    VARAPRASAD H S, SRIDEVI P V, ANURADHA M S. Optical, morphological, electrical properties of ZnO-TiO2-SnO2/CeO2 semiconducting ternary nanocomposite[J]. Advanced Powder Technology,2021,32(5):1472-1480. doi: 10.1016/j.apt.2021.02.042
    [30]
    HUANG S P, WEI Z Q, MA L, et al. Hydrothermal synthesis, photo-electrochemical and photocatalytic activity of SnS2/CdS nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2021,32(1):676-686. doi: 10.1007/s10854-020-04848-9
    [31]
    马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2高性能超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10): 4580-4589.

    MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Composite Sinica, 2022, 39(10): 4580-4589(in Chinese).
    [32]
    艾兵, 吕盼娣, 张腾, 等. Cu-P复合改性对g-C3N4可见光催化性能的影响[J]. 工业水处理, 2023, 43(8): 149-154.

    AI Bing, LYU Pandi, ZHANG Teng, et al. Effect of Cu-P composite modification on visible-light catalytic performance of g-C3N4[J]. Industial Water Treament, 2023, 43(8): 149-154(in Chinese).
    [33]
    REN H T, JIA S Y, WU S H, et al. Phase transformation synthesis of novel Ag2O/Ag2CO3/g-C3N4 composite with enhanced photocatalytic activity[J]. Materials Letters,2015,142:15-18. doi: 10.1016/j.matlet.2014.11.082
    [34]
    ZHENG J H, ZHANG L. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability[J]. Applied Catalysis B: Environmental,2018,237:1-8. doi: 10.1016/j.apcatb.2018.05.060
    [35]
    YANG H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms[J]. Materials Research Bulletin,2021,142:111406. doi: 10.1016/j.materresbull.2021.111406
    [36]
    LI D Y, HUSSAIN S, WANG Y J, et al. ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental,2021,286:119887. doi: 10.1016/j.apcatb.2021.119887
    [37]
    XING W X, ZHOU L, CHEN B, et al. α-FeOOH-MoO3 nanorod for effective photo-Fenton degradation of dyes and antibiotics at a wide range of pH[J]. Chemistry, an Asian Journal,2020,15(17):2749-2753. doi: 10.1002/asia.202000668
    [38]
    YE Y C, YANG H, WANG X X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Materials Science in Semiconductor Processing,2018,82:14-24. doi: 10.1016/j.mssp.2018.03.033
    [39]
    郭彬, 杨静, 卢文欣, 等. Cu(II)金属有机骨架中配位环境对类Fenton反应活性的影响[J]. 无机化学学报, 2022, 38(10):1981-1992. doi: 10.11862/CJIC.2022.185

    GUO Bin, YANG Jing, LU Wenxin, et al. Effect of coordination environment on Fenton-like reactivity in Cu(II) metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry,2022,38(10):1981-1992(in Chinese). doi: 10.11862/CJIC.2022.185
    [40]
    CHEN C R, WANG X D, WANG S L, et al. Direct Z-scheme structure g-C3N4-BiOI with highly efficient visible-light-driven photocatalytic activity for bacteria inactivation[J]. Chemistry Select,2020,5(47):15084-15090. doi: 10.1002/slct.202003942
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (643) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return