Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHU Pei, ZHANG Xiaomin, YU Jie, et al. Impact of Fe content of coal fly ash magnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 342-354. doi: 10.13801/j.cnki.fhclxb.20220307.001
Citation: ZHU Pei, ZHANG Xiaomin, YU Jie, et al. Impact of Fe content of coal fly ash magnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 342-354. doi: 10.13801/j.cnki.fhclxb.20220307.001

Impact of Fe content of coal fly ash magnetospheres and the grinding size upon microstructure and microwave absorption properties of Fe3C@C-CNTs nanocomposites

doi: 10.13801/j.cnki.fhclxb.20220307.001
Funds:  R&D Program Funded by the Science and Technology Bureau of Xianyang City: Development of Advanced Adsorbing Materials Based on Coal Fly Ash (2021ZDYF-GY-0034); Jiujiang Steel Group Science and Technology R&D Project Funding Project (4500618489)
  • Received Date: 2021-12-30
  • Accepted Date: 2022-02-17
  • Rev Recd Date: 2022-02-06
  • Available Online: 2022-03-08
  • Publish Date: 2023-01-15
  • Nano-structured iron/carbon composites can be prepared by chemical vapor deposition (CVD) using coal fly ash magnetospheres as raw materials, showing good microwave absorption properties. However, there are problems such as uneven properties of magnetospheres and difficulty in structural regulation. In this paper, the magnetospheres were separated by the shaking bed method, and then were grinded. The effects of the magnetospheres Fe content and the grinding particle size on the CVD products were investigated. The results show that the CVD product of Fe-rich magnetospheres is Fe3C@C-CNTs, and the composite exhibits a porous cluster spherical structure. With the increase of magnetic bead Fe content, the relative carbon deposition (C/Fe value) of the composite decreases, and the graphitization degree decreases (Higher D/G peak intensity ratio ID/IG value increases), resulting in the increase of impedance matching value and the improvement of wave absorption performance. When the Fe content is 71.43wt%, the effective absorption band of the composite reaches 4.5 GHz, and the minimum reflection loss (RLmin) reaches −16.1 dB. After grinding the magnetospheres, the C/Fe value of CVD products is unchanged, but the carbon deposition rate increases, the ID/IG value increases, and the electromagnetic wave attenuation constant decreases, but the impedance matching is significantly improved, and the microwave absorption performance is greatly improved. When the grinding particle size is 18.23 μm, the effective absorption band of the composite is 4.8 GHz, and the RLmin can reach −34.7 dB. The excellent microwave absorption properties of the composites benefit from the synergistic absorption of CNTs and Fe3C@C. Multiple reflections of microwave are supposed to be enhances in the porous cluster aggregated spheres, and the promoted interface polarization is also attributed to the excellent microwave absorption properties.

     

  • loading
  • [1]
    谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248.

    XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248(in Chinese).
    [2]
    张开创, 高欣宝, 张倩, 等. 碳包覆磁改性碳纳米管基复合材料制备及吸波性能研究[J]. 兵器装备工程学报, 2019, 40(4):46-49. doi: 10.11809/bqzbgcxb2019.04.012

    ZHANG Kaichuang, GAO Xinbao, ZHANG Qian, et al. Preparation and absorbing properties of carbon-coated magnetic modified carbon nanotube composites[J]. Journal of Equipment Engineering,2019,40(4):46-49(in Chinese). doi: 10.11809/bqzbgcxb2019.04.012
    [3]
    CUI L, HAN X, WANG F, et al. A review on recent advances in carbon-based dielectric system for microwave absorption[J]. Journal of Materials Science,2021,56(18):10782-10811. doi: 10.1007/s10853-021-05941-y
    [4]
    ZHU L, ZENG X, CHEN M, et al. Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances[J]. RSC Advances,2017,7(43):26801-26808. doi: 10.1039/C7RA04456A
    [5]
    FAN G, JIANG Y, XIN J, et al. Facile synthesis of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing properties[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):18765-18774. doi: 10.1021/acssuschemeng.9b02913
    [6]
    WEI B, ZHOU C, YAO Z, et al. Lightweight and high-efficiency microwave absorption of reduced graphene oxide loaded with irregular magnetic quantum dots[J]. Journal of Alloys and Compounds,2021,886:161330. doi: 10.1016/j.jallcom.2021.161330
    [7]
    刘渊, 贾瑛, 李茸. 碳纤维表面羰基铁的原位生长及吸波性能[J]. 无机化学学报, 2020, 36(2): 210-216.

    LIU Yuan, JIA Ying, LI Rong. In-situ growth and microwave absorption properties of carbonyl iron on carbon fiber surface[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(2): 210-216(in Chinese).
    [8]
    WANG B, WU Q, FU Y, et al. A review on carbon/magnetic metal composites for microwave absorption[J]. Journal of Materials Science & Technology,2021,86(27):91-109.
    [9]
    LI G, WANG L, LI W, XU Y. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous & Mesoporous Materials,2015,211:97-104. doi: 10.1016/j.micromeso.2015.02.054
    [10]
    GAO S, CHEN L, ZHANG Y, et al. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber[J]. Composites Science and Technology,2021,213:108921. doi: 10.1016/j.compscitech.2021.108921
    [11]
    邓钏, 张卫珂, 杨艳青, 等. 磁性纳米洋葱碳基复合材料的制备及其吸波性能[J]. 新型炭材料, 2019, 34(2):170-180.

    DENG Chuan, ZHANG Weike, YANG Yanqing, et al. Preparation and microwave absorption properties of magnetic carbon nano-onion matrix composites[J]. New Carbon Materials,2019,34(2):170-180(in Chinese).
    [12]
    KUANG D, HOU L, WANG S, et al. Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles[J]. Carbon,2019,153:52-61. doi: 10.1016/j.carbon.2019.06.105
    [13]
    ZHANG Z, WU X, ZHOU T, et al. The effect of iron-bearing mineral melting behavior on ash deposition during coal combustion[J]. Proceedings of the Combustion Institute,2011,33(2):2853-2861. doi: 10.1016/j.proci.2010.07.061
    [14]
    VASSILEV S V, MENENDEZ R, BORREGO A G, et al. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates[J]. Fuel,2004,83(11-12):1563-1583. doi: 10.1016/j.fuel.2004.01.010
    [15]
    SHARONOVA O M, ANSHITS N N, SOLOVYOV L A, et al. Relationship between composition and structure of globules in narrow fractions of ferrospheres[J]. Fuel,2013,111:332-343. doi: 10.1016/j.fuel.2013.03.059
    [16]
    ZHANG X M, LI J, HE B, et al. Bamboo-shaped carbon nanotubes on coal fly ash cenospheres for Pb(II) adsorption[J]. Journal of Nanoscience and Nanotechnology,2020,20(8):5089-5095. doi: 10.1166/jnn.2020.18480
    [17]
    ZHANG X M, LI J, HE B, et al. Phase transformation and carbon precipitation of coal fly ash magnetospheres during a CVD process for microwave adsorption[J]. Ceramics International,2019,45(15):18980-18987. doi: 10.1016/j.ceramint.2019.06.138
    [18]
    SOKOL E V, KALUGIN V M, NIGMATULINA E N, et al. Ferrospheres from fly ashes of Chelyabinsk coals: Chemical composition, morphology and formation conditions[J]. Fuel,2002,81(7):867-876. doi: 10.1016/S0016-2361(02)00005-4
    [19]
    KOSHY N, SINGH D N. Fly ash zeolites for water treatme[J]. Journal of Environmental Chemical Engineering,2016,4(2):1460-1472. doi: 10.1016/j.jece.2016.02.002
    [20]
    XUE Q, LU S. Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis[J]. Journal of Zhejiang University-SCIENCE A,2008,9(11):1595-1600. doi: 10.1631/jzus.A0820051
    [21]
    王欣, 展仁礼, 张晓民, 等. 粉煤灰磁珠精细化分级试验研究[J]. 选煤技术, 2021, 5(288):43-49.

    WANG Xin, ZHAN Renli, ZHANG Xiaomin, et al. Experimental study on fine classification of magnetosphere from coal fly ash[J]. Coal Preparation Technology,2021,5(288):43-49(in Chinese).
    [22]
    DONG S, ZHANG X, LI X, et al. SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption[J]. Chemical Engineering Journal,2020,392:123817. doi: 10.1016/j.cej.2019.123817
    [23]
    GAO S, ZHANG Y, XING H, et al. Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption[J]. Chemical Engineering Journal,2020,387:124149. doi: 10.1016/j.cej.2020.124149
    [24]
    DING D, WANG Y, LI X, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption[J]. Carbon,2017,111:722-732. doi: 10.1016/j.carbon.2016.10.059
    [25]
    LIU W, SHAO Q, JI G, et al. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal,2017,313:734-744. doi: 10.1016/j.cej.2016.12.117
    [26]
    STRZALKOWSKA E. Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash[J]. International Journal of Coal Geology,2021,240:103746. doi: 10.1016/j.coal.2021.103746
    [27]
    BARDE A A, KLAUSNER J F, MEI R. Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent[J]. International Journal of Hydrogen Energy,2016,41(24):10103-10119. doi: 10.1016/j.ijhydene.2015.12.129
    [28]
    BAJWA N, LI X, AJIYAN P M, et al. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology,2008,8(11):6054-6064. doi: 10.1166/jnn.2008.SW02
    [29]
    刘盼盼, 李汉超, 杨林, 等. 退火温度对金属催化四面体非晶碳转变为石墨烯过程的影响[J]. 材料研究学报, 2018, 32(5):341-347. doi: 10.11901/1005.3093.2017.107

    LIU Panpan, LI Hanchao, YANG Lin, et al. Influence of annealing temperature on the metal-catalyzed crystallization of tetrahedral amorphous carbon to graphene[J]. Chinese Journal of Materials Research,2018,32(5):341-347(in Chinese). doi: 10.11901/1005.3093.2017.107
    [30]
    WANG D T, WANG X C, ZHANG X, et al. Tunable dielectric properties of carbon nanotube@polypyrrole core-shell hybrids by the shell thickness for electromagnetic wave absorption[J]. Chinese Physics Letters,2020,37(4):045201. doi: 10.1088/0256-307X/37/4/045201
    [31]
    CHENG Y, ZHAO H, ZHAO Y, et al. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response[J]. Carbon,2020,161:870-879. doi: 10.1016/j.carbon.2020.02.011
    [32]
    LIU L, HE P, ZHOU K C, et al. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers[J]. AIP Advances,2013,3(8):082112. doi: 10.1063/1.4818495
    [33]
    GAO S, YANG S H, WANG H Y, et al. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438-444. doi: 10.1016/j.carbon.2020.02.031
    [34]
    LV H, JI G, LIU W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features[J]. Journal of Materials Chemistry C,2015,3(39):10232-10241. doi: 10.1039/C5TC02512E
    [35]
    LI S, LIN L, YAO L, et al. MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,856:158183. doi: 10.1016/j.jallcom.2020.158183
    [36]
    杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601.

    YANG Xi, CAO Min, JIAN Yu, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601(in Chinese).
    [37]
    叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7): 3292-3302.

    YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3292-3302(in Chinese).
    [38]
    ZHENG Q, YU M, WANG W, et al. Enhanced microwave absorption performance of Fe/C nanofibers by adjusting the magnetic particle size using different electrospinning solvents[J]. Ceramics International,2020,46(18):28603-28612. doi: 10.1016/j.ceramint.2020.08.018
    [39]
    KHANI O, SHOUSHTARI M Z, JAZIREHPOUR M, et al. Effect of carbon shell thickness on the microwave absorption of magnetite-carbon core-shell nanoparticles[J]. Ceramics International,2016,42(13):14548-14556. doi: 10.1016/j.ceramint.2016.06.069
    [40]
    WANG Y, WANG W, SUN J, et al. Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance[J]. Carbon,2018,135:1-11. doi: 10.1016/j.carbon.2018.04.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (783) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return