Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LIU Jie, CAO Yu, QIAN Zhen, et al. Preparation and properties of rigid nanoporous phenolic resin-based composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5601-5610. doi: 10.13801/j.cnki.fhclxb.20221221.001
Citation: LIU Jie, CAO Yu, QIAN Zhen, et al. Preparation and properties of rigid nanoporous phenolic resin-based composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5601-5610. doi: 10.13801/j.cnki.fhclxb.20221221.001

Preparation and properties of rigid nanoporous phenolic resin-based composites

doi: 10.13801/j.cnki.fhclxb.20221221.001
Funds:  National Natural Science Foundation of China (22078100; 52102098); Postdoctoral Science Foundation of China (2022 M711140)
  • Received Date: 2022-11-01
  • Accepted Date: 2022-12-02
  • Rev Recd Date: 2022-11-23
  • Available Online: 2022-12-23
  • Publish Date: 2023-10-15
  • With the rapid development of China's domestic space engineering, the harsher requirements are put forward for lightweight, dimensional stability, thermal protection efficiency and long service capability of the thermal protection system. Rigid nanoporous phenolic resin-based RMI/PR composites are prepared via a sol-gel polymerization and ambient-pressure gradient drying using rigid mullite ceramic tile (RMI) as the reinforcement and hybrid phenolic resin (PR) as matrix. The effects of resin concentration on the microstructure, mechanical properties, thermal insulation properties and ablative properties of the composites are systematically studied. The results show that RMI has obvious transverse isotropy, and the room-temperature thermal conductivity in the Z direction is 0.036 W/(m∙K). With the increase of the resin concentration from 15wt% to 45wt%, the density of RMI/PR increases from 0.52 g/cm3 to 0.85 g/cm3, and the most probable pore size of the resin matrix decreases sharply from 2081 nm to 32 nm. With the increase of resin concentration, the room-temperature thermal conductivity of RMI/PR increases slowly and all of them are less than 0.07 W/(m∙K), but its mechanical properties are significantly enhanced and the maximum compressive strength in the Z direction of composites is up to 20.8 MPa. After static heat insulation test at 1000℃ for 300 s, the backside temperature of composites decreases from 277℃ to 240℃. Under the oxy-acetylene ablation at 2000℃ for 30 s, the linear ablation rate of the composites is reduced from 0.200 mm/s to 0.081 mm/s, indicating that the increase of resin concentration can significantly improve the high-temperature thermal insulation properties and ablation resistance of the composites.

     

  • loading
  • [1]
    杨昌昊, 董彦芝. 我国深空探测领域防热材料的进展与需求[J]. 宇航材料工艺, 2021, 51(5):26-33.

    YANG Changhao, DONG Yanzhi. Progress and requirements of thermal protection materials for deep space exploration in China[J]. Aerospace Materials & Technology,2021,51(5):26-33(in Chinese).
    [2]
    冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8):14-24. doi: 10.11868/j.issn.1001-4381.2020.000206

    FENG Zhihai, SHI Jianjun, KONG Lei, et al. Research progress in low-density materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering,2020,48(8):14-24(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000206
    [3]
    UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica,2020,176:341-356. doi: 10.1016/j.actaastro.2020.06.047
    [4]
    中国人民解放军总装备部军事训练教材工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003: 116-125.

    Working Committee on Military Training Textbooks of the General Armament Department of the People's Liberation Army of China. Hypersonic areoheat and aerothermal protection[M]. Beijing: National Defense Industry Press, 2003: 116-125(in Chinese).
    [5]
    陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390. doi: 10.16253/j.cnki.37-1226/tq.2017.07.001

    CHEN Yufeng, HONG Changqing, HU Chenglong, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics,2017,38(5):311-390(in Chinese). doi: 10.16253/j.cnki.37-1226/tq.2017.07.001
    [6]
    TRAN H K, RASKY D J, ESFAHANI L. Thermal response and ablation characteristics of light-weight ceramic ablators[C]//AIAA 28th Thermophysics Conference. Orlando, USA, 1993: 1.
    [7]
    TRAN H, JOHNSON C, RASKY D, et al. Silicone impregnated reusable ceramic ablators for Mars follow-on missions[C]//31st Thermophysics Conference. New Orleans, 2006: 96-1819.
    [8]
    GRAY M H B, KURBANYAN L, MILSTEIN F. Constitutive properties of silicone-impregnated reusable ceramic ablator in compression: Poisson's ratios[J]. Journal of Spacecraft and Rockets,2009,46(4):923-928. doi: 10.2514/1.34350
    [9]
    PALMER G, POLSKY S. Heating analysis of the nosecap and leading edges of the X-34 vehicle[J]. Journal of Spacecraft and Rockets,1999,36(2):199-205. doi: 10.2514/2.3450
    [10]
    贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1):77-80, 90. doi: 10.3969/j.issn.1007-2330.2016.01.013

    JIA Xianfeng, LIU Xuhua, QIAO Wenming, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology,2016,46(1):77-80, 90(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.01.013
    [11]
    STACKPOOLE M, SEPKA S, COZMUTA I, et al. Post-flight evaluation of stardust sample return capsule forebody heatshield material[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008: 1202.
    [12]
    DRIVER D M, SLIMKO E M, BECK R A S. The evolution of the MSL heatshield[J/OL]. Georgia Institute of Technology, 2023[2023-08-28]. http://hdl.handle.net/1853/26356.
    [13]
    中国国家标准化管理委员会. 绝热材料 稳态热阻及有关特性的测定 热流计法: GB/T 10295—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Thermal insulation—Determination of steady-state thermal resistance and related properties—Heat flow meter apparatus: GB/T 10295—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [14]
    中国国家标准化管理委员会. 多孔陶瓷压缩强度试验方法: GB/T 1964—1996[S]. 北京: 中国标准出版社, 1996.

    Standardization Administration of the People's Republic of China. Test method for crushing strength of porous ceramic: GB/T 1964—1996[S]. Beijing: Standards Press of China, 1996(in Chinese).
    [15]
    国防科学技术工业委员会. 烧蚀材料烧蚀试验方法: GJB 323A—96[S]. 北京: 国防工业出版社, 1996.

    Commission of Science, Technology and Industry for National Defense of the PRC. Test methods for ablation for ablators: GJB 323A—96[S]. Beijing: National Defense Industry Press, 1996(in Chinese).
    [16]
    王晓晶, 郑洲顺, 宋敏, 等. 金属粉末及纤维烧结颈形貌的三维重构[J]. 中国体视学与图像分析, 2017, 22(2):127-132. doi: 10.13505/j.1007-1482.2017.22.02.002

    WANG Xiaojing, ZHENG Zhoushun, SONG Min, et al. Three dimensional reconstruction of metal powder and fiber sintered morphology[J]. Chinese Journal of Stereology and Image Analysis,2017,22(2):127-132(in Chinese). doi: 10.13505/j.1007-1482.2017.22.02.002
    [17]
    张钊. SiO2基纤维隔热瓦热导率及压缩性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    ZHANG Zhao. Study on thermal conductivity and compression performance of SiO2-based fibrous insulation[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [18]
    张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8):3663-3673.

    ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanism of low-density needled fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3663-3673(in Chinese).
    [19]
    孙陈诚, 胡子君, 鲁胜, 等. 刚性隔热材料的力学性能[J]. 宇航材料工艺, 2010, 40(2):74-76. doi: 10.3969/j.issn.1007-2330.2010.02.020

    SUN Chencheng, HU Zijun, LU Sheng, et al. Mechanical properties of rigid thermal insulating materials[J]. Aerospace Materials & Technology,2010,40(2):74-76(in Chinese). doi: 10.3969/j.issn.1007-2330.2010.02.020
    [20]
    杨海龙, 胡子君, 胡胜泊, 等. 纳米隔热材料的热导率变化规律[J]. 宇航材料工艺, 2019, 49(2):30-35. doi: 10.12044/j.issn.1007-2330.2019.02.006

    YANG Hailong, HU Zijun, HU Shengbo, et al. Thermal conductivity variation of nano-porous thermal insulating materials[J]. Aerospace Materials & Technology,2019,49(2):30-35(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.02.006
    [21]
    LU X, ARDUINI-SCHUSTER M C, KUHN J, et al. Thermal conductivity of monolithic organic aerogels[J]. Science,1992,255(5047):971-972. doi: 10.1126/science.255.5047.971
    [22]
    王亚楠, 李兆, 曹静, 等. 酚醛树脂及含硼酚醛树脂热裂解和碳化研究进展[J]. 当代化工, 2021, 50(9):2235-2241. doi: 10.3969/j.issn.1671-0460.2021.09.048

    WANG Yanan, LI Zhao, CAO Jing, et al. Research progress of pyrolysis and carbonization of phenolic resin and boron-containing phenolic resin[J]. Contemporary Chemical Industry,2021,50(9):2235-2241(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.09.048
    [23]
    钱震, 张鸿宇, 张琪凯, 等. 高强度—中密度纳米孔树脂基防隔热复合材料的制备与性能[J].复合材料学报, 2023, 40(1): 83-95.

    QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength-medium density nanoporous resin-based ablation/insulation integrated composites [J]. Acta Materiae Compositae Sinica, 2023, 40(1): 83-95(in Chinese).
    [24]
    时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热—力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    SHI Shengbo. Ablation mechanism and thermo-mechanical behavior of silica/phenolic composites[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [25]
    王重海. CBCF/RF气凝胶复合材料的性能优化与烧蚀行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Chonghai. Optimization of properties and ablation behavior of CBCF/RF aerogel composites[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [26]
    KOU S, FAN S, MA X, et al. Ablation performance of C/HfC-SiC composites with in-situ HfSi2/HfC/SiC multi-phase coatings under 3000℃ oxyacetylene torch[J]. Corrosion Science,2022,200:110218. doi: 10.1016/j.corsci.2022.110218
    [27]
    LI T, ZHANG Y, FU Y, et al. Siliconization elimination for SiC coated C/C composites by a pyrolytic carbon coating and the consequent improvement of the mechanical property and oxidation resistances[J]. Journal of the European Ceramic Society,2021,41(10):5046-5055. doi: 10.1016/j.jeurceramsoc.2021.04.008
    [28]
    PASK J A, SCHNEIDER H. Phase equilibria and stability of mullite[M]. New Jersey: John Wiley & Sons, Ltd., 2006: 227-237.
    [29]
    LI X K, LIU L, ZHANG Y X, et al. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels[J]. Carbon,2001,39(2):159-165. doi: 10.1016/S0008-6223(00)00020-8
    [30]
    LAN X, LIANG C, WU M, et al. Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves[J]. The Journal of Physical Che-mistry C,2018,122:18537-18544. doi: 10.1021/acs.jpcc.8b05339
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (804) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return