Volume 41 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
YAN Xiaojie, JIN Xiangyu, HUANG He, et al. Ablation behavior and multi-physical field numerical simulation of ultra-lightweight quartz/phenolic composite[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4730-4743. doi: 10.13801/j.cnki.fhclxb.20240418.002
Citation: YAN Xiaojie, JIN Xiangyu, HUANG He, et al. Ablation behavior and multi-physical field numerical simulation of ultra-lightweight quartz/phenolic composite[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4730-4743. doi: 10.13801/j.cnki.fhclxb.20240418.002

Ablation behavior and multi-physical field numerical simulation of ultra-lightweight quartz/phenolic composite

doi: 10.13801/j.cnki.fhclxb.20240418.002
Funds:  National Natural Science Foundation of China (51872066; 52032003; U20B2017)
  • Received Date: 2024-01-29
  • Accepted Date: 2024-04-03
  • Rev Recd Date: 2024-03-13
  • Available Online: 2024-04-19
  • Publish Date: 2024-09-15
  • Based on the ablation and heat protection mechanism of ultra-lightweight quartz/phenolic composite, a multi-physics field model for the ablation of composite containing silica phase transition was established. The surface and backside temperature, pyrolysis degree, different layer thicknesses and pore pressure distribution of ultra-lightweight quartz/phenolic composite were predicted. The numerical simulation obtained the variation law of the thickness of the liquid layer of surface silica through calculation, and the temperature results predicted by the model are consistent with the measurement results in the ablation experiment. According to the heat flow analysis results of various heat transfer modes, it can be seen that the most important factors affecting the prevention/insulation mechanism are thermal radiation, thermal blockage and silica gasification. Aiming at the typical application conditions of ultra-lightweight quartz/phenolic composite, the heat flux densities between 0.5 MW/m2 and 2.5 MW/m2 were used as environmental input parameters to study the ablation behavior of ultra-lightweight quartz/phenolic composite. The results show that the surface ablation retreat of ultra-light quartz/phenolic composite increases with the increase of heat flux density; When the heat flux density is less than 1.5 MW/m2, the thickness of the surface liquid layer increases with the increase of heat flux density. When the heat flux density is greater than 1.5 MW/m2, the thickness of the surface liquid layer remains unchanged. This model provides certain guidance for in-depth research on the ablation mechanism of ultra-lightweight quartz/phenolic composite.

     

  • loading
  • [1]
    姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003: 52-93.

    JIANG Guiqing, LIU Lianyuan. Heat transfer of hypersonic gas and ablation thermal protection[M]. Beijing: National Defense Industry Press, 2003: 52-93(in Chinese).
    [2]
    张睿, 祝文祥, 张澳, 等. 烧蚀型热防护系统概率设计与可靠性评估方法研究[J]. 计算力学学报, 2023, 21(8): 4708.

    ZHANG Rui, ZHU Wenxiang, ZHANG Ao, et al. Probabilistic design and reliability assessment methods for ablative thermal protection systems[J]. Chinese Journal of Computational Mechanics, 2023, 21(8): 4708(in Chinese).
    [3]
    韩杰才, 洪长青, 张幸红, 等. 新型超轻质热防护复合材料的研究进展[J]. 载人航天, 2015, 21(4): 315-321. doi: 10.3969/j.issn.1674-5825.2015.04.001

    Han Jiecai, Hong Changqing, Zhang Xinghong, et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight, 2015, 21(4): 315-321(in Chinese). doi: 10.3969/j.issn.1674-5825.2015.04.001
    [4]
    JIN X Y, LIU C, HUANG H, et al. Multiscale, elastic, and low-density carbon fibre/siliconoxycarbide-phenolic interpenetrating aerogel nanocomposite for ablative thermal protection[J]. Composites Part B: Engineering, 2022, 217(1): 109100.
    [5]
    Yan X J, Huang H, Fan Z L, et al. Assessment of a 3D ablation material response model for ultra-lightweight quartz/phenolic composite[J]. Polymer Composites, 2022, 43(4): 8341-8355.
    [6]
    Liang H R, Li W J, Wang T K, et al. Optimal design of three-dimensional thermal protection structure considering orthotropic properties of woven composites based on Micro-CT image[J]. International Journal of Thermal Sciences, 2023, 194(7): 108579.
    [7]
    张军, 许阳阳, 张运法, 等. 石英灯辐射加热条件下低密度碳/酚醛复合材料高温响应及分析[J]. 装备环境工程, 2020, 17(1): 51-57.

    Zhang Jun, Xu Yangyang, Zhang Fayun, et al. High temperature response and analysis of low density carbon fiber/phenolic composites under quartz lamp radiation heating[J]. Equipment Environmental Engineering, 2020, 17(1): 51-57(in Chinese).
    [8]
    Pedro G S P, Homero d P e S, Cristian C P R, et al. The effect of environment in carbon-phenolic composite ablation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 500(43): 1-16.
    [9]
    Pan Y W, Jin X Y, Wang H B, et al. Nano-TiO2 coated needle carbon fiber reinforced phenolic aerogel composite with low density, excellent heat-insulating and infrared radiation shielding performance[J]. Journal of Materials Science & Technology, 2023, 152(12): 181-189.
    [10]
    Wang H B, Quan X , Yin L , et al. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 109798.
    [11]
    Cai H X, Niu B, Qian Zh, et al. Mechanical, thermal insulation, and ablation behaviors of needle-punched fabric reinforced nanoporous phenolic composites: The role of anisotropic microstructure[J]. Composites Science and Technology, 2024, 245(8): 110325.
    [12]
    陈海龙, 方国东, 李林杰, 等. 高硅氧/酚醛复合材料热-力-化学多物理场耦合计算[J]. 复合材料学报, 2014, 81(8): 533-540.

    Chen Hailong, Fang Guodong, Li Linjie, et al. Multi-physical field coupling calculation of silica/phenolic composites under thermal-mechanical-chemical condition[J]. Acta Materiae Compositae Sinica, 2014, 81(8): 533-540(in Chinese).
    [13]
    李林杰, 方国东, 易法军, 等. 高硅氧/酚醛复合材料热变形实验测试及表面烧蚀形貌分析[J]. 固体火箭技术, 2015, 38(3): 445-450.

    Li Linjie, Fang Guodong, Yi Fajun, et al. Thermal deformation test and surface ablative morphology analysis of silica / phenolic composites[J]. Journal of Solid Rocket Technology, 2015, 38(3): 445-450(in Chinese).
    [14]
    Shi S B, Li L J, Liang J, et al. Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications[J]. International Journal of Heat and Mass Transfer, 2016, 102(11): 1190-1198.
    [15]
    宋若康, 张梦珊, 戴珍, 等. 烧蚀型防热/吸波多功能一体化复合材料的制备及性能[J]. 复合材料学报, 2024, 41(1): 252-261.

    Song Ruokang, Zhang Mengshan, Dai Zhen, et al. Preparation and properties of multi-functional composite integrated with heat-shielding and radar-absorbing[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 252-261(in Chinese).
    [16]
    白炳越, 刘丹, 杨进军, 等. 酚醛树脂浸渍石英纤维复合材料的热解行为[J]. 灭火剂与助燃材料, 2023, 42(9): 1275-1279.

    Bai Bingyue, Liu Dan, Yang Jinjun. Thermal decomposition behavior of phenolic resin impregnated quartz fiber composite materials[J]. Fire extinguishing agents and combustion materials, 2023, 42(9): 1275-1279(in Chinese).
    [17]
    Huang H, Yan X J, Jin X Y, et al. Flexible and interlocked quartz fibre reinforced dual polyimide network for high-temperature thermal protection[J]. Journal of Materials Chemistry A, 2023, 11(3): 9931-9941.
    [18]
    王湘阳, 年永乐, 刘娜, 等. 考虑C-SiO2反应的新型硅基材料烧蚀分析模型[J]. 化工学报, 2021, 72(6): 3270-3277.

    Wang Xiangyun, Nian Yongle, Liu Na, et al. Novel ablation model of silica-reinforced composites considering C-SiO2 reaction[J]. CIESC Journal, 2021, 72(6): 3270-3277(in Chinese).
    [19]
    许善成. 切向空气流下连续激光辐照玻璃纤维树脂基复合材料烧蚀特性的研究[D]. 南京: 南京理工大学, 2019.

    Xu Shancheng. Study on ablation characteristics of glass fiber reinforced resin matrix composites by CW laser irradiation under tangential air flow[D]. Nanjing: Nanjing University of Science & Technology, 2019(in Chinese).
    [20]
    智伟. 柔性防热材料辐射热流下烧蚀行为的数值计算[D]. 天津: 天津工业大学, 2019.

    Zhi Wei. Numerical calculation of ablation behavior of flexible heat-resistant materials under radiation heat flux[D]. Tianjin: Tiangong University, 2019(in Chinese).
    [21]
    Humberto A M, Sonia F C Silva, Edison B. Simulation of ablation in composite via an interface tracking method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39: 1453-1467.
    [22]
    黄鹏, 郑振荣, 毛科铸, 等. 热阻塞效应在有机硅树脂-碳纤织物复合材料烧蚀防热中的作用[J]. 复合材料学报, 2021, 38(9): 3045-3055.

    Huang Peng, Zhen Zhengrong, Mao Kezhu, et al. Effect of heat blockage on ablative thermal protection of silicone resin-carbon fiber fabrics[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3045-3055(in Chinese).
    [23]
    万涛. 超轻质碳/酚醛复合材料的烧蚀行为和仿真预报研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Wang Tao. Research on ablation behavior and simulation prediction of ultra-lightweight carbon phenolic composite[D]. Harbin: Harbin institute of Technology, 2017(in Chinese).
    [24]
    时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热-力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    Shi Shengbo. Ablation Mechanism and Thermo-Mechanical Behavior of Silica/Phenolic Composites[D]. Harbin: Harbin institute of Technology, 2013(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (166) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return