Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
LU Maoxu, JI Xiaohui, HAO Ziqing, et al. Prediction of strength and fatigue life for 2D plain-woven high-alumina fiber reinforced alumina matrix composites under a complex in-plane stress state[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3785-3798. doi: 10.13801/j.cnki.fhclxb.20210202.001
Citation: LU Maoxu, JI Xiaohui, HAO Ziqing, et al. Prediction of strength and fatigue life for 2D plain-woven high-alumina fiber reinforced alumina matrix composites under a complex in-plane stress state[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3785-3798. doi: 10.13801/j.cnki.fhclxb.20210202.001

Prediction of strength and fatigue life for 2D plain-woven high-alumina fiber reinforced alumina matrix composites under a complex in-plane stress state

doi: 10.13801/j.cnki.fhclxb.20210202.001
  • Received Date: 2020-11-17
  • Accepted Date: 2021-01-16
  • Available Online: 2021-02-02
  • Publish Date: 2021-11-01
  • This paper presents a strength criterion and fatigue life prediction method for 2D braided alumina matrix composites under a complex in-plane stress state. The static strength of the material was obtained by in-plane tensile, compression, and pure shear tests. Considering the difference between tensile and compressive properties of materials and the influence mechanism of in-plane tensile and shear coupling on material strength, a revised Hoffman strength theory was proposed. The predicted off-axis tensile strength is consistent with the test results, and the deviation is not more than 10%. Tensile fatigue tests were carried out with the off-axis angle θ=0°, 15°, 30°, 45°, the stress ratio R=0.1, and frequency f=10 Hz. The test results show that the fatigue life decreases with the increase of off-axis angle. Due to the in-plane shear stress component, the fatigue failure is gradually changed from fiber-dominated to fiber-matrix dominated mode. Based on a combination of the uniaxial tensile fatigue life curve, the Broutman-Sahu residual strength model, which is used to characterize the variation of the residual strength with the fatigue cycles, and the modified Hoffman strength theory, the paper proposes a fatigue life prediction model under complex in-plane loading conditions. The fatigue shear damage factor is defined to characterize the effect of the normal and shear stress interaction on fatigue life. The fatigue life prediction model is used to predict the fatigue life of specimens in the off-axis tensile fatigue tests. The predicted result agrees with the test result, and the deviation is within the 1-time life span. The results indicate that the proposed fatigue life prediction model can be used to predict the fatigue life of 2D braided alumina matrix composites under the complex in-plane stress condition with the given stress ratio, temperature, and fatigue load frequency.

     

  • loading
  • [1]
    张明. 增强改性SiO2气凝胶复合材料的研究进展[J]. 复合材料学报, 2020, 37(11):1-10.

    ZHANG Ming. Research progress of reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica,2020,37(11):1-10(in Chinese).
    [2]
    郭玉超, 马寅魏, 石多奇, 等. 莫来石纤维增强SiO2气凝胶复合材料的力学性能试验[J]. 复合材料学报, 2016, 33(6):1297-1304.

    GUO Yuchao, MA Yinwei, SHI Duoqi et al. Mechanical property tests of mullite fiber-reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1297-1304(in Chinese).
    [3]
    米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):635-643.

    MI Chunhu, JIANG Yonggang, SHI Duoqi et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Material Composite Sinica,2014,31(3):635-643(in Chinese).
    [4]
    LI J, JIAO G, WANG B, et al. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part I-Experiment and analysis[J]. Chinese Journal of Aeronautics,2014,27(6):1586-1597. doi: 10.1016/j.cja.2014.10.026
    [5]
    LI J, JIAO G, WANG B, et al. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part II-Material model and numerical implementation[J]. Chinese Journal of Aeronautics,2015,28(1):314-326. doi: 10.1016/j.cja.2014.10.027
    [6]
    赵淑媛, 董江龙, 孙新杨, 等. 纤维增强气凝胶复合材料高温结构转变及热稳定性研究[J]. 装备环境工程, 2020, 17(1):58-62.

    ZHAO Shuyuan, DONG Jianglong, SUN Xinyang et al. Structural changes and thermal stability of fiber reinforced aerogel composites[J]. Equipment Environmental Engineering,2020,17(1):58-62(in Chinese).
    [7]
    李俊, 矫桂琼, 王波, 等. 二维编织C/SiC复合材料非线性损伤本构模型与应用[J]. 复合材料学报, 2013, 30(1):165-171.

    LI Jun, JIAO Guiqiong, WANG Bo, et al. A non-linear damage constitutive model for 2D woven C/SiC composite material and its application[J]. Acta Materiae Compositae Sinica,2013,30(1):165-171(in Chinese).
    [8]
    FAWAZ Z, ELLYIN F. Fatigue failure model for fiber-reinforced materials under general loading conditions[J]. Journal of Composite Materials,1994,28(15):1432-1451. doi: 10.1177/002199839402801503
    [9]
    KAWAKAMI H, FUJII T, MORITA Y. Fatigue degradation and life prediction of glass fabric polymer composite under tension/torsion biaxial loadings[J]. Journal of Reinforced Plastics & Composites,1996,15(2):183-195.
    [10]
    PHILIPPIDIS T, VASSILOPOULOS A. Fatigue strength prediction under multiaxial stress[J]. Journal of Composite Materials,1999,33(17):1578-1599. doi: 10.1177/002199839903301701
    [11]
    SCHULTE K, REESE E, CHOU T, et al. Fatigue behaviour and damage development in woven fabric and hybrid fabric composites[C]//MATTHEWS F L, Buskell N C, HODGKINSON J M, MORTON J. Sixth International Conference on Composite Materials, Second European Conference on Composite Materials: ICCM & ECCM. London: Elsevier, 1987: 4.89-4.99.
    [12]
    MIYANO Y, MCMURRAY M, ENYAMA J, et al. Loading rate and temperature dependence on flexural fatigue behavior of a satin woven CFRP laminates[J]. Journal of Composite Materials,1994,28(13):1250-1260. doi: 10.1177/002199839402801305
    [13]
    KHAN R, KHAN Z, AL-SULAIMAN F, et al. Fatigue life estimates in woven carbon fabric epoxy composites at non-ambient temperature[J]. Journal of Composite Materials,2002,36(22):2517-2535. doi: 10.1177/002199802761405277
    [14]
    YASUHIDE S, SATORU T, KATSUMI T, et al. Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension–tension cycling[J]. Cryogenics,2006,46(11):794-798. doi: 10.1016/j.cryogenics.2006.07.003
    [15]
    OWEN M, GRIFFITHS J. Evaluation of biaxial stress failure surfaces for a glass fabric reinforced polyester resin under static and fatigue loading[J]. Journal of Composite Materials,1978,13:1521-1537.
    [16]
    PANDITA S, HUYSMANS G, WEVERS M, et al. Tensile fatigue behaviour of glass plain-weave fabric composites in on- and off-axis directions[J]. Composites Part A: Applied Science & Manufacturing,2001,32(10):1533-1539. doi: 10.1016/S1359-835X(01)00053-7
    [17]
    AGARWAL B, BROUTMAN L. Analysis and performance of fiber composites[M]. London: Wiley; 1990: 287-314.
    [18]
    XIAO J, BATHIAS C. Fatigue behavior of unnotched and notched woven glass/epoxy laminates[J]. Composites Science & Technology,1994,50(2):141-148.
    [19]
    SINGH K, ANSARI M, AZAM M. Fatigue life and damage evolution in woven GFRP angle ply laminates[J]. International Journal of Fatigue,2021,142:105964. doi: 10.1016/j.ijfatigue.2020.105964
    [20]
    FOTI F, PANNIER Y, MELLIER D, et al. Damage characterization during high temperature fatigue of off-axis woven organic matrix composites for aircraft applications[J]. IOP Conference Series: Materials Science and Engineering,2018,406:012055. doi: 10.1088/1757-899X/406/1/012055
    [21]
    CAI D, ZHOU G, WANG X, et al. Experimental investigation on mechanical properties of unidirectional and woven fabric glass/epoxy composites under off-axis tensile loading[J]. Polymer Testing,2017,58:142-152. doi: 10.1016/j.polymertesting.2016.12.023
    [22]
    KAWAI M, TANIGUCHI T. Off-axis fatigue behavior of plain weave carbon epoxy fabric laminates at room and high temperatures and its mechanical modeling[J]. Composites Part A: Applied Science & Manufacturing,2006,37(2):243-256. doi: 10.1016/j.compositesa.2005.07.003
    [23]
    KAWAI M, YAJIMA S, HACHINOHE A, et al. Off-axis fatigue behavior of unidirectional carbon fiber-reinforced composites at room and high temperatures[J]. Journal of Composite Materials,2001,35(76):545-576.
    [24]
    KAWAI M, YAJIMA S, HACHINOHE A, et al. High-temperature off-axis fatigue behaviour of unidirectional carbon fiber-reinforced composites with different resin matrices[J]. Composites Science & Technology,2001,61(9):1285-1302.
    [25]
    中华人民共和国国防科学技术工业委员会. 连续纤维增强陶瓷基复合材料常温拉伸性能试验方法: GJB 6475—2008[S]. 北京: 国防科工委军标出版发行部, 2008.

    The Commission of Science, Technology and Industry for National Defense of the People’s Republic of China. Test method for tensile properties of continuous fiber-reinforced ceramic composites at ambient temperature: GJB 6475—2008[S]. Beijing: The Commission of Science, Technology and Industry for National Defense Military Standards Press, 2008.
    [26]
    吕双祺, 石多奇, 杨晓光等. 采用数字图像相关方法的莫来石纤维增强气凝胶复合材料力学试验[J]. 复合材料学报, 2015, 32(5):1428-1435.

    LV Shuangqi, SHI Duoqi, YANG Xiaoguang, et al. Mechanical tests of mullite fiber reinforced aerogel composites using digital image correlation method[J]. Acta Materiae Compositae Sinica,2015,32(5):1428-1435(in Chinese).
    [27]
    许杨剑, 李翔宇, 王效贵. 基于遗传算法的功能梯度材料参数的反演分析[J]. 复合材料学报, 2013, 30(4):170-176.

    XU Yangjian, LI Xiangyu, WANG Xiaogui. Mechanical tests of mullite fiber reinforced aerogel composites using digital image correlation method[J]. Acta Materiae Compositae Sinica,2013,30(4):170-176(in Chinese).
    [28]
    American Society for Testing and Materials International. Standard test methods for monotonic compressive strength testing of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperatures: ASTM C1358—05[S]. Pennsylvania: ASTM International, 2005.
    [29]
    American Society for Testing and Materials International. Standard test methods for shear strength of continuous fiber-reinforced advanced ceramics at ambient temperatures: ASTM C1292—00[S]. Pennsylvania: ASTM International, 2005.
    [30]
    姜如. 连续氧化铝纤维增强氧化铝基复合材料的制备与性能研究[D]. 长沙: 国防科技大学, 2019.

    JIANG Ru. Preparation and performance of continuous alumina fiber reinforced alumina matrix composites[D]. Changsha: National University of Defense Technology, 2019(in Chinese).
    [31]
    JI Xiaohui, HAO Ziqing, SU Lijun, et al. Characterizing the constitutive response of plain-woven fibre reinforced aerogel matrix composites using digital image correlation[J]. Composite Structures,2020:111652.
    [32]
    沈观林, 胡更开, 刘彬. 复合材料力学[M]. 第二版. 北京: 清华大学出版社, 2013: 64-69.

    SHEN Guanlin, HU Gengkai, LIU Bin. Composite mechanics[M]. Second Edition. Beijing: Tsinghua University Press, 2013: 64-69(in Chinese).
    [33]
    QUARESIMIN M, SUSMEL L, TALREJA R. Fatigue behaviour and life assessment of composite laminates under multiaxial loadings[J]. International Journal of Fatigue,2010,32(1):2-16. doi: 10.1016/j.ijfatigue.2009.02.012
    [34]
    蔡登安. 纤维增强复合材料的力学行为与多轴疲劳性能研究[D]. 南京: 南京航空航天大学, 2017.

    CAI Dengan. On mechanical and multiaxial fatigue behaviour of fibre-reinforced composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [35]
    POST N, CASE S, LESKO J, et al. Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading[J]. International Journal of Fatigue,2008,30(12):2064-2086. doi: 10.1016/j.ijfatigue.2008.07.002
    [36]
    BROUNTMAN L, SAHU S. A new theory to predict cumulative fatigue damage in fiber glass reinforced plastics[J]. ASTM STP,1972,497:170-188.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (1123) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return