Volume 39 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
YANG Dangsha, WANG Kangqi, ZHU Yanyan, et al. Preparation of nano ZIF-8@short carbon fibers and its effects on the flame retardancy, smoke suppression and mechanical properties of epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1559-1569. doi: 10.13801/j.cnki.fhclxb.20210616.005
Citation: YANG Dangsha, WANG Kangqi, ZHU Yanyan, et al. Preparation of nano ZIF-8@short carbon fibers and its effects on the flame retardancy, smoke suppression and mechanical properties of epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1559-1569. doi: 10.13801/j.cnki.fhclxb.20210616.005

Preparation of nano ZIF-8@short carbon fibers and its effects on the flame retardancy, smoke suppression and mechanical properties of epoxy composites

doi: 10.13801/j.cnki.fhclxb.20210616.005
  • Received Date: 2021-04-13
  • Accepted Date: 2021-06-05
  • Rev Recd Date: 2021-05-25
  • Available Online: 2021-06-17
  • Publish Date: 2022-04-01
  • The nano ZIF-8 on short carbon fibers (ZIF-8@SCFs) were prepared in situ growth. The composites were manufactured using ZIF-8@SCFs, ammonium polyphosphate (APP) and epoxy resin (EP) to improve the flame retardant and mechanical properties. Oxygen index tester, horizontal and vertical combustion tester, cone calorimeter and universal electronic tensile machine were used to investigate the flame retardant and mechanical properties of EP composite materials. The experimental results show that when the addition amount of ZIF-8@SCFs is 1wt% (the mass ratio of APP to ZIF-8@SCFs is 4∶1), the limiting oxygen index of the composite material increases from 25.7% to 28.1%, and UL-94 reaches V-1 level. The peak heat release rate (pHRR) and total smoke production (TSP) are reduced evidently compared with the sample with only 5wt% of APP. Besides, the tensile strength, flexural strength, elastic modulus and elongation at break of the composite material are increased by 86%, 81%, 20% and 75%, respectively, which solves the problem that the addition of inorganic flame-retardant destroys the mechanical properties of EP. The prepared composites could be applied in practice.

     

  • loading
  • [1]
    全国汽车标准化技术委员会. 汽车内饰材料的燃烧特性: GB 8410—2006[S]. 北京: 中国标准出版社, 2006.

    COMMITTEE N A S T. Combustion characteristics of automotive interior materials: GB 8410—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [2]
    WU C S, LIU Y L, CHIU Y S. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents[J]. Polymer,2002,43(15):4277-4284. doi: 10.1016/S0032-3861(02)00234-3
    [3]
    KAWAHARA T, YUUKI A, HASHIMOTO K, et al. Immobilization of flame-retardant onto silica nanoparticle surface and properties of epoxy resin filled with the flame-retardant-immobilized silica (2)[J]. Reactive & Functional Polymers,2013,73(3):613-618.
    [4]
    LIU Y L, HSIUE G H, CHIU Y S. Synthesis, characterization, thermal, and flame retardant properties of phosphate-based epoxy resins[J]. Journal of Polymerence Part A-Polymer Chemistry,2015,35(3):565-574.
    [5]
    邢云亮, 李云涛, 赵春霞, 等. 功能型核壳微球对环氧树脂燃烧性能和力学性能的影响[J]. 高分子材料科学与工程, 2015, 31(1):57-61.

    XING Y L, LI Y T, ZHAO C X, et al. Effect of functional core-shell microspheres on the combustion and mechanical properties of epoxy resin[J]. Polymer Materials Science and Engineering,2015,31(1):57-61(in Chinese).
    [6]
    BOCCARUSSO L, CARRINO L, DURANTE M, et al. Hemp fabric/epoxy composites manufactured by infusion process: Improvement of fire properties promoted by ammonium polyphosphate[J]. Composites Part B: Engineering,2016,89:117-126.
    [7]
    李娟, 刘青, 曹佳丽, 等. 阻燃环氧树脂研究进展[J]. 合成树脂及塑料, 2016(33):80.

    LI J, LIU Q, CAO J L, et al. Research progress of flame-retardant epoxy resin[J]. Synthetic Resin and Plastic,2016(33):80(in Chinese).
    [8]
    CHEN W, LIU P, LIU Y, et al. Flame-retardant and thermal degradation mechanisms of melamine polyphosphate in combination with aluminum phosphinate in glass fabric-reinforced epoxy resin[J]. Polymer Composites,2018,40(8):3199-3208.
    [9]
    岑浩, 杨洪斌, 傅雅琴. 硅溶胶改性碳纤维对碳纤维/环氧树脂复合材料界面性能影响[J]. 复合材料学报, 2012(6):32-36.

    CEN H, YANG H B, FU Y Q. Effect of silica sol modified carbon fiber on the interface properties of carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2012(6):32-36(in Chinese).
    [10]
    CHEN M, WANG X, LI X, et al. The synergistic effect of cuprous oxide on an intumescent flame-retardant epoxy resin system[J]. RSC Advances,2017,7(57):35619-35628. doi: 10.1039/C7RA05482C
    [11]
    DING S, YAN Q, JIANG H, et al. Fabrication of Pd@ZIF-8 catalysts with different Pd spatial distributions and their catalytic properties[J]. Chemical Engineering Journal,2016,296:146-153. doi: 10.1016/j.cej.2016.03.098
    [12]
    ASTM. Standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position: ASTM D3801[S]. West Conshohocken: ASTM, 2013.
    [13]
    ASTM. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (Oxygen index): ASTM D2863—97[S]. West Conshohocken: ASTM, 1997.
    [14]
    ISO. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660-1:2015[S]. Geneva: ISO, 2015.
    [15]
    ASTM. Standard test method for tensile properties of plastics1: ASTM D 638[S]. West Conshohocken: ASTM, 2014.
    [16]
    ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D 790[S]. West Conshohocken: ASTM, 2017.
    [17]
    ZHANG M, SHI X, DAI X, et al. Improving the crystallization and fire resistance of poly(lactic acid) with nano-ZIF-8@GO[J]. Journal of Materials Science,2018,53(9):7083-7093. doi: 10.1007/s10853-018-2049-2
    [18]
    LIU A, YU C, LIN J, et al. Construction of CuInS2@ZIF-8 nanocomposites with enhanced photocatalytic activity and durability[J]. Materials Research Bulletin,2018,112:147-153.
    [19]
    BUI T T, CUONG N D, YONG S K, et al. In situ growth of microporous ZIF-8 nanocrystals on a macroporous phyllosilicate mineral[J]. Materials Letters,2017,212:69-72.
    [20]
    PAN Y, SUN K, LIU S, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. Journal of the American Chemical Society,2018,140(7):2610-2618. doi: 10.1021/jacs.7b12420
    [21]
    LIN L, ZHANG T, LIU H O, et al. In situ fabrication of a perfect Pd/ZnO@ZIF-8 core-shell microsphere as an efficient catalyst by a ZnO support-induced ZIF-8 growth strategy[J]. Nanoscale, 2015, 7(17): 7615.
    [22]
    MA L, MENG L, WU G, et al. Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol[J]. Composites Science & Technology,2015,114:64-71.
    [23]
    ZHANG, JW, JIANG, et al. Morphology and properties of soy protein and polylactide blends[J]. Biomacromolecules, 2006, 7(5): 1551-1561.
    [24]
    XU W, WANG G, LIU Y, et al. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin[J]. RSC Advances,2018,8(5):2575-2585. doi: 10.1039/C7RA12816A
    [25]
    XU W, ZHANG B, WANG X, et al. The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin[J]. Journal of Hazardous Materials,2018,343:364-375.
    [26]
    TAO T, CHEN X, MENG X, et al. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene[J]. Angewandte Chemie International Edition,2005,44(10):1517-1520. doi: 10.1002/anie.200461506
    [27]
    WANG J, YUAN B, MU X, et al. Two-dimensional metal phenylphosphonates as novel flame retardants for polystyrene[J]. Industrial & Engineering Chemistry Research,2017,56(25):7192-7206.
    [28]
    ZHANG W, LI X, YANG R. Blowing-out effect and tempera-ture profile in condensed phase in flame retarding epoxy resins by phosphorus-containing oligomeric silsesquioxane[J]. Polymers for Advanced Technologies,2013,24(11):951-961. doi: 10.1002/pat.3170
    [29]
    LUO Q, YUAN Y, DONG C, et al. Highly effective flame retardancy of a novel DPPA-based curing agent for DGEBA epoxy resin[J]. Industrial& Engineering Chemistry Research,2016,55(41):10880-10888.
    [30]
    XIE J, SHI X, ZHANG M, et al. Improving the flame retardancy of polypropylene by nano metal-organic frameworks and bioethanol coproduct[J]. Fire and Materials,2019,43(4):373-380. doi: 10.1002/fam.2709
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (1206) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return