Volume 40 Issue 7
Apr.  2023
Turn off MathJax
Article Contents
TANG Guijun, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737. doi: 10.13801/j.cnki.fhclxb.20230225.001
Citation: TANG Guijun, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737. doi: 10.13801/j.cnki.fhclxb.20230225.001

Research progress of nanomaterials in flexible piezoresistive pressure sensors

doi: 10.13801/j.cnki.fhclxb.20230225.001
Funds:  National Natural Science Foundation of China (51902290); Science and Technology Program of the State Administration for Market Regulation (2021MK062)
  • Received Date: 2022-12-01
  • Accepted Date: 2023-02-16
  • Rev Recd Date: 2023-01-30
  • Available Online: 2023-02-27
  • Publish Date: 2023-07-15
  • With the rapid development of flexible pressure sensors in the fields of health detection, electronic skin and wearable electronic devices, the research on fabrication of high-performance flexible piezoresistive sensors has become prevalent. The performance of flexible pressure sensors can be optimized by nanomaterials because of their surface and interface effects, small size effects and macroscopic quantum tunneling effects. Nanomaterials based pressure sensor has the advantages of small size, wide detection range and high sensitivity. In this paper, the latest research progress of nanomaterials in flexible pressure sensors in recent years is reviewed.

     

  • loading
  • [1]
    ZHANG H, LIN L, HU N, et al. Pillared carbon@tungsten decorated reduced graphene oxide film for pressure sensors with ultra-wide operation range in motion monitoring[J]. Carbon,2022,189:430-442. doi: 10.1016/j.carbon.2021.12.080
    [2]
    ZOU Q, HE K, OUYANG J, et al. Highly sensitive and durable sea-urchin-shaped silver nanoparticles strain sensors for human-activity monitoring[J]. ACS Applied Materials & Interfaces,2021,13(12):14479-14488. doi: 10.1021/acsami.0c22756
    [3]
    YANG J, TANG D, AO J, et al. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing[J]. Advanced Functional Materials,2020,30(36):2002611. doi: 10.1002/adfm.202002611
    [4]
    LIM S, SON D, KIM J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures[J]. Advanced Functional Materials,2015,25(3):375-383. doi: 10.1002/adfm.201402987
    [5]
    HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal,2019,373:1357-1366. doi: 10.1016/j.cej.2019.05.136
    [6]
    CAI J H, LI J, CHEN X D, et al. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor[J]. Chemical Engineering Journal,2020,393:124805. doi: 10.1016/j.cej.2020.124805
    [7]
    LI J, CHEN S, LIU W, et al. High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly (vinylidene fluoride) composite membranes[J]. The Jour-nal of Physical Chemistry C,2019,123(18):11378-11387. doi: 10.1021/acs.jpcc.8b12410
    [8]
    DAI Y, FU Y, ZENG H, et al. A self-powered brain-linked vision electronic-skin based on triboelectric-photodetecing pixel-addressable matrix for visual-image recognition and behavior intervention[J]. Advanced Functional Materials,2018,28(20):1800275. doi: 10.1002/adfm.201800275
    [9]
    YUE Y, LIU N, LIU W, et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor[J]. Nano Energy,2018,50:79-87. doi: 10.1016/j.nanoen.2018.05.020
    [10]
    WANG Z, HU T, LIANG R, et al. Application of zero-dimensional nanomaterials in biosensing[J]. Frontiers in Chemistry,2020,8:320. doi: 10.3389/fchem.2020.00320
    [11]
    GONG S, CHENG W. One-dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials,2017,3(3):1600314. doi: 10.1002/aelm.201600314
    [12]
    刘璐, 王李波, 刘大荣, 等. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 19-28.

    LIU Lu, WANG Libo, LIU Darong, et al. Research progress of two-dimensional nanomaterials in flexible piezoresistive sensor[J]. Materials Review, 2022, 36(4): 19-28(in Chinese).
    [13]
    宋璐, 左小磊, 李敏. 柔性可穿戴传感器及其应用研究[J]. 分析化学, 2022, 50(11):1661-1672.

    SONG Lu, ZUO Xiaolei, LI Min. Flexible wearable sensor and its application study[J]. Journal of Analytical Chemistry,2022,50(11):1661-1672(in Chinese).
    [14]
    胡苗苗, 赵昕, 任宝娜, 等. 基于静电纺纳米纤维的柔性可穿戴压力传感器的研究进展[J]. 材料工程, 2023, 51(2): 15-27.

    HU Miaomiao, ZHAO Xin, REN Baona, et al. Research progress of flexible wearable pressure sensor based on electrostatic spinning nanofibers[J]. Materials Engineering, 2023, 51(2): 15-27(in Chinese).
    [15]
    于江涛, 孙雷, 肖瑶, 等. 压阻式柔性压力传感器的研究进展[J]. 电子元件与材料, 2019, 38(6):1-11. doi: 10.14106/j.cnki.1001-2028.2019.06.001

    YU Jiangtao, SUN Lei, XIAO Yao, et al. The research progress of piezoresistive type flexible pressure sensor[J]. Journal of Electronic Components and Materials,2019,38(6):1-11(in Chinese). doi: 10.14106/j.cnki.1001-2028.2019.06.001
    [16]
    李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10):7-24.

    LI Fengchao, KONG Zhen, WU Jinhua, et al. Research progress of flexible piezoresistive pressure sensor[J]. Chinese Journal of Physics,2021,70(10):7-24(in Chinese).
    [17]
    虞沛芾, 李伟. 薄膜压力传感器的研究进展[J]. 有色金属材料与工程, 2020, 9(2):47-54.

    YU Peifu, LI Wei. The research progress of thin film pressure sensor[J]. Non-ferrous Metal Materials and Engineering,2020,9(2):47-54(in Chinese).
    [18]
    HUANG Y, FAN X, CHEN S C, et al. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials,2019,29(12):1808509. doi: 10.1002/adfm.201808509
    [19]
    LEE Y, MYOUNG J, CHO S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins[J]. ACS Nano,2020,15(1):1795-1804.
    [20]
    FU X, WANG L, ZHAO L, et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin[J]. Advanced Functional Materials,2021,31(17):2010533. doi: 10.1002/adfm.202010533
    [21]
    JEONG Y, GU J, BYUN J, et al. Ultra-wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring[J]. Advanced Healthcare Materials,2021,10(9):2001461. doi: 10.1002/adhm.202001461
    [22]
    CHENG H, WANG B, YANG K, et al. A high-performance piezoresistive sensor based on poly(styrene-co-methacrylic acid)@polypyrrole microspheres/graphene-decorated TPU electrospun membrane for human motion detection[J]. Chemical Engineering Journal,2021,426:131152. doi: 10.1016/j.cej.2021.131152
    [23]
    LONG S, FENG Y, HE F, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators[J]. Nano Energy,2021,85:105973. doi: 10.1016/j.nanoen.2021.105973
    [24]
    GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces,2019,11(28):25034-25042.
    [25]
    LEE D, LEE H, JEONG Y, et al. Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles[J]. Advanced Materials,2016,28(42):9364-9369. doi: 10.1002/adma.201603526
    [26]
    BI L, YANG Z, CHEN L, et al. Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins[J]. Journal of Materials Chemistry A,2020,8(38):20030-20036. doi: 10.1039/D0TA07044K
    [27]
    YANG Y, CAO Z, HE P, et al. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response[J]. Nano Energy,2019,66:104134. doi: 10.1016/j.nanoen.2019.104134
    [28]
    CAO M, FAN S, QIU H, et al. CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge[J]. ACS Applied Materials & Interfaces,2020,12(32):36540-36547.
    [29]
    PENG X, WU K, HU Y, et al. A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors[J]. Journal of Materials Chemistry A,2018,6(46):23550-23559. doi: 10.1039/C8TA09322A
    [30]
    CAO M, WANG M, LI L, et al. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire[J]. Nano Energy,2018,50:528-535. doi: 10.1016/j.nanoen.2018.05.038
    [31]
    LIU H, FENG B, BAI X, et al. Two-dimensional oxide based pressure sensors with high sensitivity[J]. Nano Select,2022,3(1):51-59. doi: 10.1002/nano.202100053
    [32]
    BI P, LIU X, YANG Y, et al. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications[J]. Advanced Materials Technologies,2019,4(10):1900426. doi: 10.1002/admt.201900426
    [33]
    HAN Z, LI H, XIAO J, et al. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics[J]. ACS Applied Materials & Interfaces,2019,11(36):33370-33379.
    [34]
    KIM Y R, KIM M P, PARK J, et al. Binary spiky/spherical nanoparticle films with hierarchical micro/nanostructures for high-performance flexible pressure sensors[J]. ACS Applied Materials & Interfaces,2020,12(52):58403-58411.
    [35]
    KIM H, LEE S W, JOH H, et al. Chemically designed metallic/insulating hybrid nanostructures with silver nanocrystals for highly sensitive wearable pressure sensors[J]. ACS Applied Materials & Interfaces,2018,10(1):1389-1398.
    [36]
    XU H, CHEN W, WANG C, et al. Ultralight and flexible silver nanoparticle-wrapped "scorpion pectine-like" polyimide hybrid aerogels as sensitive pressor sensors with wide temperature range and consistent conductivity response[J]. Chemical Engineering Journal,2023,453:139647. doi: 10.1016/j.cej.2022.139647
    [37]
    CHEN M, LUO W, XU Z, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays[J]. Nature Communications,2019,10(1):1-9. doi: 10.1038/s41467-018-07882-8
    [38]
    CHANG H, KIM S, KANG T H, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks[J]. ACS Applied Materials & Interfaces,2019,11(35):32291-32300.
    [39]
    DOSHI S M, THOSTENSON E T. Thin and flexible carbon nanotube-based pressure sensors with ultrawide sensing range[J]. ACS Sensors,2018,3(7):1276-1282. doi: 10.1021/acssensors.8b00378
    [40]
    ZHU B, LING Y, YAP L W, et al. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring[J]. ACS Applied Materials & Interfaces,2019,11(32):29014-29021.
    [41]
    HA M, LIM S, PARK J, et al. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins[J]. Advanced Functional Materials,2015,25(19):2841-2849. doi: 10.1002/adfm.201500453
    [42]
    SONG Y X, XU W M, RONG M Z, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11): 1089-1104.
    [43]
    LUO C, LIU N, ZHANG H, et al. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer[J]. Nano Energy,2017,41:527-534. doi: 10.1016/j.nanoen.2017.10.007
    [44]
    ZHAO X F, HANG C Z, WEN X H, et al. Ultrahigh-sensitive finlike double-sided E-skin for force direction detection[J]. ACS Applied Materials & Interfaces,2020,12(12):14136-14144.
    [45]
    PANG Y, ZHANG K, YANG Z, et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J]. ACS nano,2018,12(3):2346-2354. doi: 10.1021/acsnano.7b07613
    [46]
    HE J, XIAO P, LU W, et al. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J]. Nano Energy,2019,59:422-433. doi: 10.1016/j.nanoen.2019.02.036
    [47]
    YUE Z, YE X, LIU S, et al. Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips[J]. Biosensors and Bioelectronics,2019,139:111296. doi: 10.1016/j.bios.2019.05.001
    [48]
    CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. ACS Nano,2020,14(2):2145-2155. doi: 10.1021/acsnano.9b08952
    [49]
    ZHENG Y, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin[J]. Chemical Engineering Journal,2021,420:127720. doi: 10.1016/j.cej.2020.127720
    [50]
    XIANG Y, FANG L, WU F, et al. 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range[J]. Advanced Materials Technologies,2021,6(6):2001157. doi: 10.1002/admt.202001157
    [51]
    PATANIYA P M, BHAKHAR S A, TANNARANA M, et al. Highly sensitive and flexible pressure sensor based on two-dimensional MoSe2 nanosheets for online wrist pulse monitoring[J]. Journal of Colloid and Interface Science,2021,584:495-504. doi: 10.1016/j.jcis.2020.10.006
    [52]
    TANNARANA M, SOLANKI G K, BHAKHAR S A, et al. 2D-SnSe2 nanosheet functionalized piezo-resistive flexible sensor for pressure and human breath monitoring[J]. ACS Sustainable Chemistry & Engineering,2020,8(20):7741-7749.
    [53]
    LI W, HE K, ZHANG D, et al. Flexible and high performance piezoresistive pressure sensors based on hierarchical flower-shaped SnSe2 nanoplates[J]. ACS Applied Energy Materials,2019,2(4):2803-2809. doi: 10.1021/acsaem.9b00147
    [54]
    TEN ELSHOF J E, YUAN H, GONZALEZ RODRIGUEZ P. Two-dimensional metal oxide and metal hydroxide nanosheets: Synthesis, controlled assembly and applications in energy conversion and storage[J]. Advanced Energy Materials,2016,6(23):1600355. doi: 10.1002/aenm.201600355
    [55]
    MATSUBA K, WANG C, SARUWATARI K, et al. Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min[J]. Science Advances,2017,3(6):e1700414. doi: 10.1126/sciadv.1700414
    [56]
    ZHONG M, ZHANG L, LIU X, et al. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces[J]. Chemical Engineering Journal,2021,412:128649. doi: 10.1016/j.cej.2021.128649
    [57]
    FU X, ZHAO L, YUAN Z, et al. Hierarchical MXene@ZIF-67 film based high performance tactile sensor with large sensing range from motion monitoring to sound wave detection[J]. Advanced Materials Technologies,2022,7(8):2101511.
    [58]
    ZHANG H, LIU N, SHI Y, et al. Piezoresistive sensor with high elasticity based on 3D hybrid network of sponge@CNTs@Ag NPs[J]. ACS Applied Materials & Interfaces,2016,8(34):22374-22381.
    [59]
    SU T, LIU N, GAO Y, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances[J]. Nano Energy,2021,87:106151. doi: 10.1016/j.nanoen.2021.106151
    [60]
    LI X, FAN Y J, LI H Y, et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor[J]. ACS Nano,2020,14(8):9605-9612. doi: 10.1021/acsnano.9b10230
    [61]
    CAO X, ZHANG J, CHEN S, et al. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Advanced Functional Materials,2020,30(35):2003618. doi: 10.1002/adfm.202003618
    [62]
    WOO H K, KIM H, JEON S, et al. One-step chemical treatment to design an ideal nanospacer structure for a highly sensitive and transparent pressure sensor[J]. Journal of Materials Chemistry C,2019,7(17):5059-5066. doi: 10.1039/C9TC00820A
    [63]
    WEI Y, CHEN S, DONG X, et al. Flexible piezoresistive sensors based on "dynamic bridging effect" of silver nanowires toward graphene[J]. Carbon,2017,113:395-403. doi: 10.1016/j.carbon.2016.11.027
    [64]
    ZHENG S, WU X, HUANG Y, et al. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture[J]. Composites Science and Technology,2020,197:108255. doi: 10.1016/j.compscitech.2020.108255
    [65]
    LI Y, CUI Y, ZHANG M, et al. Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets[J]. Nano Letters,2022,22(7):2817-2825. doi: 10.1021/acs.nanolett.1c04976
    [66]
    CHEN T, WU G, PANAHI-SARMAD M, et al. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions[J]. Composites Science and Technology,2022,227:109563. doi: 10.1016/j.compscitech.2022.109563
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (1226) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return