Citation: | TANG Guijun, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3720-3735. doi: 10.13801/j.cnki.fhclxb.20230225.001 |
[1] |
ZHANG H, LIN L, HU N, et al. Pillared carbon@tungsten decorated reduced graphene oxide film for pressure sensors with ultra-wide operation range in motion monitoring[J]. Carbon,2022,189:430-442. doi: 10.1016/j.carbon.2021.12.080
|
[2] |
ZOU Q, HE K, OUYANG J, et al. Highly sensitive and durable sea-urchin-shaped silver nanoparticles strain sensors for human-activity monitoring[J]. ACS Applied Materials & Interfaces,2021,13(12):14479-14488. doi: 10.1021/acsami.0c22756
|
[3] |
YANG J, TANG D, AO J, et al. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing[J]. Advanced Functional Materials,2020,30(36):2002611. doi: 10.1002/adfm.202002611
|
[4] |
LIM S, SON D, KIM J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures[J]. Advanced Functional Materials,2015,25(3):375-383. doi: 10.1002/adfm.201402987
|
[5] |
HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal,2019,373:1357-1366. doi: 10.1016/j.cej.2019.05.136
|
[6] |
CAI J H, LI J, CHEN X D, et al. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor[J]. Chemical Engineering Journal,2020,393:124805. doi: 10.1016/j.cej.2020.124805
|
[7] |
LI J, CHEN S, LIU W, et al. High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly (vinylidene fluoride) composite membranes[J]. The Jour-nal of Physical Chemistry C,2019,123(18):11378-11387. doi: 10.1021/acs.jpcc.8b12410
|
[8] |
DAI Y, FU Y, ZENG H, et al. A self-powered brain-linked vision electronic-skin based on triboelectric-photodetecing pixel-addressable matrix for visual-image recognition and behavior intervention[J]. Advanced Functional Materials,2018,28(20):1800275. doi: 10.1002/adfm.201800275
|
[9] |
YUE Y, LIU N, LIU W, et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor[J]. Nano Energy,2018,50:79-87. doi: 10.1016/j.nanoen.2018.05.020
|
[10] |
WANG Z, HU T, LIANG R, et al. Application of zero-dimensional nanomaterials in biosensing[J]. Frontiers in Chemistry,2020,8:320. doi: 10.3389/fchem.2020.00320
|
[11] |
GONG S, CHENG W. One-dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials,2017,3(3):1600314. doi: 10.1002/aelm.201600314
|
[12] |
刘璐, 王李波, 刘大荣, 等. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 19-28.
LIU Lu, WANG Libo, LIU Darong, et al. Research progress of two-dimensional nanomaterials in flexible piezoresistive sensor[J]. Materials Review, 2022, 36(4): 19-28(in Chinese).
|
[13] |
宋璐, 左小磊, 李敏. 柔性可穿戴传感器及其应用研究[J]. 分析化学, 2022, 50(11):1661-1672.
SONG Lu, ZUO Xiaolei, LI Min. Flexible wearable sensor and its application study[J]. Journal of Analytical Chemistry,2022,50(11):1661-1672(in Chinese).
|
[14] |
胡苗苗, 赵昕, 任宝娜, 等. 基于静电纺纳米纤维的柔性可穿戴压力传感器的研究进展[J]. 材料工程, 2023, 51(2): 15-27.
HU Miaomiao, ZHAO Xin, REN Baona, et al. Research progress of flexible wearable pressure sensor based on electrostatic spinning nanofibers[J]. Materials Engineering, 2023, 51(2): 15-27(in Chinese).
|
[15] |
于江涛, 孙雷, 肖瑶, 等. 压阻式柔性压力传感器的研究进展[J]. 电子元件与材料, 2019, 38(6):1-11. doi: 10.14106/j.cnki.1001-2028.2019.06.001
YU Jiangtao, SUN Lei, XIAO Yao, et al. The research progress of piezoresistive type flexible pressure sensor[J]. Journal of Electronic Components and Materials,2019,38(6):1-11(in Chinese). doi: 10.14106/j.cnki.1001-2028.2019.06.001
|
[16] |
李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10):7-24.
LI Fengchao, KONG Zhen, WU Jinhua, et al. Research progress of flexible piezoresistive pressure sensor[J]. Chinese Journal of Physics,2021,70(10):7-24(in Chinese).
|
[17] |
虞沛芾, 李伟. 薄膜压力传感器的研究进展[J]. 有色金属材料与工程, 2020, 9(2):47-54.
YU Peifu, LI Wei. The research progress of thin film pressure sensor[J]. Non-ferrous Metal Materials and Engineering,2020,9(2):47-54(in Chinese).
|
[18] |
HUANG Y, FAN X, CHEN S C, et al. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials,2019,29(12):1808509. doi: 10.1002/adfm.201808509
|
[19] |
LEE Y, MYOUNG J, CHO S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins[J]. ACS Nano,2020,15(1):1795-1804.
|
[20] |
FU X, WANG L, ZHAO L, et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin[J]. Advanced Functional Materials,2021,31(17):2010533. doi: 10.1002/adfm.202010533
|
[21] |
JEONG Y, GU J, BYUN J, et al. Ultra-wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring[J]. Advanced Healthcare Materials,2021,10(9):2001461. doi: 10.1002/adhm.202001461
|
[22] |
CHENG H, WANG B, YANG K, et al. A high-performance piezoresistive sensor based on poly(styrene-co-methacrylic acid)@polypyrrole microspheres/graphene-decorated TPU electrospun membrane for human motion detection[J]. Chemical Engineering Journal,2021,426:131152. doi: 10.1016/j.cej.2021.131152
|
[23] |
LONG S, FENG Y, HE F, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators[J]. Nano Energy,2021,85:105973. doi: 10.1016/j.nanoen.2021.105973
|
[24] |
GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces,2019,11(28):25034-25042.
|
[25] |
LEE D, LEE H, JEONG Y, et al. Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles[J]. Advanced Materials,2016,28(42):9364-9369. doi: 10.1002/adma.201603526
|
[26] |
BI L, YANG Z, CHEN L, et al. Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins[J]. Journal of Materials Chemistry A,2020,8(38):20030-20036. doi: 10.1039/D0TA07044K
|
[27] |
YANG Y, CAO Z, HE P, et al. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response[J]. Nano Energy,2019,66:104134. doi: 10.1016/j.nanoen.2019.104134
|
[28] |
CAO M, FAN S, QIU H, et al. CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge[J]. ACS Applied Materials & Interfaces,2020,12(32):36540-36547.
|
[29] |
PENG X, WU K, HU Y, et al. A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors[J]. Journal of Materials Chemistry A,2018,6(46):23550-23559. doi: 10.1039/C8TA09322A
|
[30] |
CAO M, WANG M, LI L, et al. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire[J]. Nano Energy,2018,50:528-535. doi: 10.1016/j.nanoen.2018.05.038
|
[31] |
LIU H, FENG B, BAI X, et al. Two-dimensional oxide based pressure sensors with high sensitivity[J]. Nano Select,2022,3(1):51-59. doi: 10.1002/nano.202100053
|
[32] |
BI P, LIU X, YANG Y, et al. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications[J]. Advanced Materials Technologies,2019,4(10):1900426. doi: 10.1002/admt.201900426
|
[33] |
HAN Z, LI H, XIAO J, et al. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics[J]. ACS Applied Materials & Interfaces,2019,11(36):33370-33379.
|
[34] |
KIM Y R, KIM M P, PARK J, et al. Binary spiky/spherical nanoparticle films with hierarchical micro/nanostructures for high-performance flexible pressure sensors[J]. ACS Applied Materials & Interfaces,2020,12(52):58403-58411.
|
[35] |
KIM H, LEE S W, JOH H, et al. Chemically designed metallic/insulating hybrid nanostructures with silver nanocrystals for highly sensitive wearable pressure sensors[J]. ACS Applied Materials & Interfaces,2018,10(1):1389-1398.
|
[36] |
XU H, CHEN W, WANG C, et al. Ultralight and flexible silver nanoparticle-wrapped "scorpion pectine-like" polyimide hybrid aerogels as sensitive pressor sensors with wide temperature range and consistent conductivity response[J]. Chemical Engineering Journal,2023,453:139647. doi: 10.1016/j.cej.2022.139647
|
[37] |
CHEN M, LUO W, XU Z, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays[J]. Nature Communications,2019,10(1):1-9. doi: 10.1038/s41467-018-07882-8
|
[38] |
CHANG H, KIM S, KANG T H, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks[J]. ACS Applied Materials & Interfaces,2019,11(35):32291-32300.
|
[39] |
DOSHI S M, THOSTENSON E T. Thin and flexible carbon nanotube-based pressure sensors with ultrawide sensing range[J]. ACS Sensors,2018,3(7):1276-1282. doi: 10.1021/acssensors.8b00378
|
[40] |
ZHU B, LING Y, YAP L W, et al. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring[J]. ACS Applied Materials & Interfaces,2019,11(32):29014-29021.
|
[41] |
HA M, LIM S, PARK J, et al. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins[J]. Advanced Functional Materials,2015,25(19):2841-2849. doi: 10.1002/adfm.201500453
|
[42] |
SONG Y X, XU W M, RONG M Z, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11): 1089-1104.
|
[43] |
LUO C, LIU N, ZHANG H, et al. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer[J]. Nano Energy,2017,41:527-534. doi: 10.1016/j.nanoen.2017.10.007
|
[44] |
ZHAO X F, HANG C Z, WEN X H, et al. Ultrahigh-sensitive finlike double-sided E-skin for force direction detection[J]. ACS Applied Materials & Interfaces,2020,12(12):14136-14144.
|
[45] |
PANG Y, ZHANG K, YANG Z, et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J]. ACS nano,2018,12(3):2346-2354. doi: 10.1021/acsnano.7b07613
|
[46] |
HE J, XIAO P, LU W, et al. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J]. Nano Energy,2019,59:422-433. doi: 10.1016/j.nanoen.2019.02.036
|
[47] |
YUE Z, YE X, LIU S, et al. Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips[J]. Biosensors and Bioelectronics,2019,139:111296. doi: 10.1016/j.bios.2019.05.001
|
[48] |
CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. ACS Nano,2020,14(2):2145-2155. doi: 10.1021/acsnano.9b08952
|
[49] |
ZHENG Y, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin[J]. Chemical Engineering Journal,2021,420:127720. doi: 10.1016/j.cej.2020.127720
|
[50] |
XIANG Y, FANG L, WU F, et al. 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range[J]. Advanced Materials Technologies,2021,6(6):2001157. doi: 10.1002/admt.202001157
|
[51] |
PATANIYA P M, BHAKHAR S A, TANNARANA M, et al. Highly sensitive and flexible pressure sensor based on two-dimensional MoSe2 nanosheets for online wrist pulse monitoring[J]. Journal of Colloid and Interface Science,2021,584:495-504. doi: 10.1016/j.jcis.2020.10.006
|
[52] |
TANNARANA M, SOLANKI G K, BHAKHAR S A, et al. 2D-SnSe2 nanosheet functionalized piezo-resistive flexible sensor for pressure and human breath monitoring[J]. ACS Sustainable Chemistry & Engineering,2020,8(20):7741-7749.
|
[53] |
LI W, HE K, ZHANG D, et al. Flexible and high performance piezoresistive pressure sensors based on hierarchical flower-shaped SnSe2 nanoplates[J]. ACS Applied Energy Materials,2019,2(4):2803-2809. doi: 10.1021/acsaem.9b00147
|
[54] |
TEN ELSHOF J E, YUAN H, GONZALEZ RODRIGUEZ P. Two-dimensional metal oxide and metal hydroxide nanosheets: Synthesis, controlled assembly and applications in energy conversion and storage[J]. Advanced Energy Materials,2016,6(23):1600355. doi: 10.1002/aenm.201600355
|
[55] |
MATSUBA K, WANG C, SARUWATARI K, et al. Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min[J]. Science Advances,2017,3(6):e1700414. doi: 10.1126/sciadv.1700414
|
[56] |
ZHONG M, ZHANG L, LIU X, et al. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces[J]. Chemical Engineering Journal,2021,412:128649. doi: 10.1016/j.cej.2021.128649
|
[57] |
FU X, ZHAO L, YUAN Z, et al. Hierarchical MXene@ZIF-67 film based high performance tactile sensor with large sensing range from motion monitoring to sound wave detection[J]. Advanced Materials Technologies,2022,7(8):2101511.
|
[58] |
ZHANG H, LIU N, SHI Y, et al. Piezoresistive sensor with high elasticity based on 3D hybrid network of sponge@CNTs@Ag NPs[J]. ACS Applied Materials & Interfaces,2016,8(34):22374-22381.
|
[59] |
SU T, LIU N, GAO Y, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances[J]. Nano Energy,2021,87:106151. doi: 10.1016/j.nanoen.2021.106151
|
[60] |
LI X, FAN Y J, LI H Y, et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor[J]. ACS Nano,2020,14(8):9605-9612. doi: 10.1021/acsnano.9b10230
|
[61] |
CAO X, ZHANG J, CHEN S, et al. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Advanced Functional Materials,2020,30(35):2003618. doi: 10.1002/adfm.202003618
|
[62] |
WOO H K, KIM H, JEON S, et al. One-step chemical treatment to design an ideal nanospacer structure for a highly sensitive and transparent pressure sensor[J]. Journal of Materials Chemistry C,2019,7(17):5059-5066. doi: 10.1039/C9TC00820A
|
[63] |
WEI Y, CHEN S, DONG X, et al. Flexible piezoresistive sensors based on "dynamic bridging effect" of silver nanowires toward graphene[J]. Carbon,2017,113:395-403. doi: 10.1016/j.carbon.2016.11.027
|
[64] |
ZHENG S, WU X, HUANG Y, et al. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture[J]. Composites Science and Technology,2020,197:108255. doi: 10.1016/j.compscitech.2020.108255
|
[65] |
LI Y, CUI Y, ZHANG M, et al. Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets[J]. Nano Letters,2022,22(7):2817-2825. doi: 10.1021/acs.nanolett.1c04976
|
[66] |
CHEN T, WU G, PANAHI-SARMAD M, et al. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions[J]. Composites Science and Technology,2022,227:109563. doi: 10.1016/j.compscitech.2022.109563
|