Volume 39 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
CHEN Haibin, CHEN Rui, LIU Meiqi, et al. Research progress of force-induced oriented highly thermally conductive polymer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1486-1497. doi: 10.13801/j.cnki.fhclxb.20210925.001
Citation: CHEN Haibin, CHEN Rui, LIU Meiqi, et al. Research progress of force-induced oriented highly thermally conductive polymer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1486-1497. doi: 10.13801/j.cnki.fhclxb.20210925.001

Research progress of force-induced oriented highly thermally conductive polymer composites

doi: 10.13801/j.cnki.fhclxb.20210925.001
  • Received Date: 2021-07-19
  • Accepted Date: 2021-09-13
  • Rev Recd Date: 2021-09-13
  • Available Online: 2021-09-26
  • Publish Date: 2022-04-01
  • With the rapid development of semiconductor manufacturing technology, the miniaturization and integration of electronic equipment make the heat dissipation becoming a key factor restricting the development of electronic components, and higher requirements have been placed on the thermal conductivity of thermal interface and packaging materials. Simple blending between thermally conductive filler and polymer matrix is difficult to achieve high thermal conductivity at low filling levels. Orientation of thermally conductive fillers in polymer matrix is favorable for achieving anisotropic thermal conductivity and reducing the thermally conductive permeation threshold, therefore, how to construct an oriented structure of thermally conductive filler in the polymer matrix to form an efficient thermally conductive network at low filling levels is becoming a research hotspot. In the process of promoting the orientation of thermally conductive fillers, especially fillers with nonspherical characteristics (flaky, rod-shaped or fibrous, etc.), external force plays a vital role. This article is classified according to the main driving forces that induce the orientation of thermally conductive fillers, and summarizes the latest technology and research progress in the preparation of anisotropic polymer matrix composites with high thermal conductivity, using magnetic field induction, electric field induction and mechanical force induction in the past 5 years. The conditions, mechanism of forming oriented structure of conducting filler under the action of external forces, and the structure-property relationship are mainly introduced. The characteristics, advantages and disadvantages of each method are analyzed. The bottlenecks in constructing an oriented structure of thermally conductive filler in the polymer matrix are analyzed simultaneously so far. Finally, the future development direction of thermally conductive polymer composites is forecasted. This review provides a reference for the development and application of highly thermally conductive, anisotropic polymer composites at a low filler loading level.

     

  • loading
  • [1]
    HAN Z D, FINA A. Thermal conductivity of carbon nano-tubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004
    [2]
    CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85.
    [3]
    SHAHIL K M, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters,2012,12(2):861-867. doi: 10.1021/nl203906r
    [4]
    WU Y M, CAO Y, XIAO X S, et al. Enhanced thermal transport performance for poly(vinylidene fluoride) composites with superfullerene[J]. Fibers and Polymers,2017,18(6):1180-1186. doi: 10.1007/s12221-017-7001-6
    [5]
    ALAM F E, DAI W, YANG M H, et al. In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity[J]. Journal of Materials Chemistry A,2017,5(13):6164-6169. doi: 10.1039/C7TA00750G
    [6]
    RUAN K P, ZHONG X, SHI X T, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review[J]. Materials Today Physics,2021,20:100456. doi: 10.1016/j.mtphys.2021.100456
    [7]
    吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(04):760-766.

    WU Y M, YU J H, CAO Y, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica,2018,35(04):760-766(in Chinese).
    [8]
    KIM K, KIM M, KIM J, et al. Magnetic filler alignment of paramagnetic Fe3O4 coated SiC/epoxy composite for thermal conductivity improvement[J]. Ceramics International,2015,41(9):12280-12287. doi: 10.1016/j.ceramint.2015.06.053
    [9]
    KIM K, JU H, KIM J. Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement[J]. Composites Science and Technology,2016,123:99-105. doi: 10.1016/j.compscitech.2015.12.004
    [10]
    YUAN C, DUAN B, LI L, et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J]. ACS Applied Materials & Interfaces,2015,7(23):13000-13006.
    [11]
    YUAN J, QIAN X T, MENG Z C, et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Materials & Interfaces,2019,11(19):17915-17924.
    [12]
    YUAN F, JIAO W C, YANG F, et al. Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites[J]. RSC Advances,2017,7(69):43380-43389. doi: 10.1039/C7RA08516H
    [13]
    RALPHS M, SCHEITLIN C, WANG R Y, et al. Buckling of magnetically formed filler fiber columns under compression increases thermal resistance of soft polymer compo-sites[J]. Journal of Heat Transfer,2019,141(1):012001.
    [14]
    GUO Y Q, RUAN K P, GU J W. Controllable thermal conductivity in composites by constructing thermal conduction networks[J]. Materials Today Physics,2021,20:100449. doi: 10.1016/j.mtphys.2021.100449
    [15]
    GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [16]
    GU J W, LV Z Y, WU Y L, et al. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method[J]. Composites Part A:Applied Science and Manufacturing,2017,94:209-216. doi: 10.1016/j.compositesa.2016.12.014
    [17]
    FENG C P, WAN S S, WU W C, et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage[J]. Composites Science and Technology,2018,167:456-462. doi: 10.1016/j.compscitech.2018.08.039
    [18]
    GUO Y Q, PAN L L, YANG X T, et al. Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105484. doi: 10.1016/j.compositesa.2019.105484
    [19]
    CHEN J, HUANG X Y, SUN B, et al. Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials[J]. ACS Applied Materials & Interfaces,2017,9(36):30909-30917.
    [20]
    UETANI K, ATA S, TOMONOH S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking[J]. Advanced Materials,2014,26(33):5857-5862. doi: 10.1002/adma.201401736
    [21]
    GUO H, LI X, WANG Z Y, et al. Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field[J]. Chinese Journal of Chemical Engineering,2018,26(5):1213-1218. doi: 10.1016/j.cjche.2017.12.015
    [22]
    KIM K, JU H, KIM J. Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement[J]. Ceramics International,2016,42(7):8657-8663. doi: 10.1016/j.ceramint.2016.02.098
    [23]
    ZHI C Y, BANDO Y S, TAN C C, et al. Effective precursor for high yield synthesis of pure BN nanotubes[J]. Solid State Communications,2005,135(1-2):67-70. doi: 10.1016/j.ssc.2005.03.062
    [24]
    GU J W, RUAN K P. Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics[J]. Nano-Micro Letters,2021,13(1):118-126. doi: 10.1007/s40820-021-00640-4
    [25]
    SHEN H, GUO J, WANG H, et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure[J]. ACS Applied Materials & Interfaces,2015,7(10):5701-5708.
    [26]
    WANG D Z, WEI H, LIN Y, et al. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocompo-sites via filler-filler interface engineering[J]. Composites Science and Technology,2021,213:108953. doi: 10.1016/j.compscitech.2021.108953
    [27]
    WANG F F, ZENG X L, YAO Y M, et al. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity[J]. Scientific Reports,2016,6(1):19394. doi: 10.1038/srep19394
    [28]
    TENG C, SU L Y, CHEN J X, et al. Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105498. doi: 10.1016/j.compositesa.2019.105498
    [29]
    HAN X, WU L J, ZHANG H B, et al. Inorganic-organic hybrid janus fillers for improving the thermal conductivity of polymer composites[J]. ACS Applied Materials & Interfaces,2019,11(13):12190-12194.
    [30]
    MORISHITA T, OKAMOTO H. Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites[J]. ACS Applied Materials & Interfaces,2016,8(40):27064-27073.
    [31]
    HE X H, YU X, WANG Y C. Significantly enhanced thermal conductivity in polyimide composites with the matching of graphene flakes and aluminum nitride by in situ polymerization[J]. Polymer Composites,2019,41(2):740-747.
    [32]
    LIU Y C, LU M P, WU K, et al. Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane composites via thermoluminescence strategy[J]. Composites Science and Technology,2021,213:108940. doi: 10.1016/j.compscitech.2021.108940
    [33]
    LIN G L, XIE B H, HU J, et al. Aligned graphene oxide nanofillers: an approach to prepare highly thermally conductive and electrically insulative transparent polymer compo-sites[J]. Journal of Nanomaterials,2015,2015:957068.
    [34]
    GU J W, GUO Y Q, YANG X T, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,95:267-273. doi: 10.1016/j.compositesa.2017.01.019
    [35]
    YU C P, GONG W B, TIAN W, et al. Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 W(m·K)−1[J]. Composites Science and Technology,2018,160:199-207. doi: 10.1016/j.compscitech.2018.03.028
    [36]
    YIN Z H, GUO J H, JIANG X H. Significantly improved thermal conductivity of silicone rubber and aligned boron nitride composites by a novel roll-cutting processing method[J]. Composites Science and Technology,2021,209:108794. doi: 10.1016/j.compscitech.2021.108794
    [37]
    JUNG H J, YU S G, BAE N S, et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube[J]. ACS Applied Materials & Interfaces,2015,7(28):15256-15262.
    [38]
    YUAN H, WANG Y, LI T, et al. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network[J]. Nanoscale,2019,11(23):11360-11368. doi: 10.1039/C9NR02491C
    [39]
    QIN T F, WANG H, HE J, et al. Amino multi-walled carbon nanotubes further improve the thermal conductivity of boron nitride/liquid crystal epoxy resin composites[J]. Express Polymer Letters,2020,14(12):1169-1179. doi: 10.3144/expresspolymlett.2020.95
    [40]
    WANG Z G, GONG F, YU W C, et al. Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites[J]. Composites Science and Technology,2018,162:7-13. doi: 10.1016/j.compscitech.2018.03.016
    [41]
    ZHOU H J, DENG H, ZHANG L, et al. Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks[J]. ACS Applied Materials& Interfaces,2017,9(34):29071-29081.
    [42]
    LIAN G, TUAN C C, LI L Y, et al. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J]. Che-mistry of Materials,2016,28(17):6096-6104. doi: 10.1021/acs.chemmater.6b01595
    [43]
    YANG J, ZHANG E W, LI X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon,2016,98:50-57. doi: 10.1016/j.carbon.2015.10.082
    [44]
    HOU X, CHEN Y P, DAI W, et al. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers[J]. Chemical Engineering Journal,2019,375:121921. doi: 10.1016/j.cej.2019.121921
    [45]
    ZENG X L, YAO Y M, GONG Z Y, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173
    [46]
    GUO L C, ZHANG Z Y, LI M H, et al. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying[J]. Composites Communications,2020,19:134-141. doi: 10.1016/j.coco.2020.03.009
    [47]
    YU C P, ZHANG J, LI Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing,2017,98:25-31. doi: 10.1016/j.compositesa.2017.03.012
    [48]
    ZENG X L, YE L, YU S H, et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties[J]. Nanoscale,2015,7(15):6774-6781. doi: 10.1039/C5NR00228A
    [49]
    LIANG C B, GU Z J, ZHANG Y L, et al. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review[J]. Nano-Micro Letters,2021,13(11):322-350. doi: 10.1007/s40820-021-00707-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (1372) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return