Volume 39 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
YANG Yurong, WANG Jiahui, MA Yuanchi, et al. Preparation of Z-scheme BiVO4−x/g-C3N4−x heterojunction mediated by double defects and photocatalytic overall water splitting[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4642-4651. doi: 10.13801/j.cnki.fhclxb.20210927.003
Citation: YANG Yurong, WANG Jiahui, MA Yuanchi, et al. Preparation of Z-scheme BiVO4−x/g-C3N4−x heterojunction mediated by double defects and photocatalytic overall water splitting[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4642-4651. doi: 10.13801/j.cnki.fhclxb.20210927.003

Preparation of Z-scheme BiVO4−x/g-C3N4−x heterojunction mediated by double defects and photocatalytic overall water splitting

doi: 10.13801/j.cnki.fhclxb.20210927.003
  • Received Date: 2021-08-09
  • Accepted Date: 2021-09-13
  • Rev Recd Date: 2021-09-02
  • Available Online: 2021-09-28
  • Publish Date: 2022-08-22
  • Z-scheme BiVO4−x/g-C3N4−x heterostructure mediated by double defects were prepared by solid phase sintering and hydrothermal methods to acquire an efficient photocatalytic system for full water splitting. The microstructure and optoelectronic properties of the heterostructure were characterized, and the photocatalytic properties of BiVO4−x/g-C3N4−x heterostructure for hydrogen and oxygen production by overall photocatalytic water splitting were tested. The results show that the introduction of abundant oxygen vacancy and nitrogen vacancy, the tightly connected interface and the construction of direct Z-scheme heterojunction improve the visible light absorption and accelerate the separation and transfer of photogenerated charge. As a result, the material has highly efficient photocatalytic activity. The Z-scheme BiVO4−x/g-C3N4−x heterojunction mediated by double defects show excellent photocatalytic activity and stability. Under visible light irradiation, the hydrogen and oxygen evolution rate reach 654 μmol·h−1·g−1, which is 6.5 times as high as that of g-C3N4−x precursor, and the oxygen evolution rate reach 302 μmol·h−1·g−1. After 20 h of visible light irradiation, the photocatalytic activity of the sample doesn’t decrease.

     

  • loading
  • [1]
    路彦丽, 王靖宇, 王建省, 等. Cu2ZnSnS4-CdS复合材料的制备及其在光催化制氢中的应用[J]. 复合材料学报, 2019, 36(9):2169-2175. doi: 10.13801/j.cnki.fhclxb.20181201.001

    LU Yanli, WANG Jingyu, WANG Jiansheng, et al. Preparation of Cu2ZnSnS4-CdS composite and its application in pohotocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica,2019,36(9):2169-2175(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181201.001
    [2]
    HUANG W, HE Q, HU Y P, et al. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production[J]. Angewandte Chemie International Edition,2019,58(26):8676-8680. doi: 10.1002/anie.201900046
    [3]
    黄冬根, 莫壮洪, 全水清, 等. 石墨烯/纳米TiO2复合材料的制备及光催化还原性能[J]. 复合材料学报, 2016, 33(1):155-162. doi: 10.13801/j.cnki.fhclxb.20150428.003

    HUANG Donggen, MO Zhuanghong, QUAN Shuiqing, et al. Preparation and photocatalytic reduction performance of graphene/nano-TiO2 composites[J]. Acta Materiae Compositae Sinica,2016,33(1):155-162(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150428.003
    [4]
    SHAO B B, LIU X J, LIU Z F, et al. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation[J]. Chemical Engineering Journal,2019,368:730-745. doi: 10.1016/j.cej.2019.03.013
    [5]
    ZENG C, HU Y M, ZHANG T R, et al. A core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficient and stable photocatalytic water splitting[J]. Journal of Materials Chemistry A,2018,6(35):16932-16942. doi: 10.1039/C8TA04258F
    [6]
    LIU C, FU Y, ZHAO J, et al. All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting[J]. Chemical Engineering Journal,2019,358:134-142. doi: 10.1016/j.cej.2018.10.005
    [7]
    LIU D N, CHEN D Y, LI N J, et al. Surface engineering of g-C3N4 by stacked oxygen vacancies-rich BiOBr sheets for boosting photocatalytic performance[J]. Angewandte Chemie International Edition,2020,59(11):4519-4524. doi: 10.1002/anie.201914949
    [8]
    YU H J, SHI R, ZHAO Y X, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Advanced Materials,2017,29(16):1605148. doi: 10.1002/adma.201605148
    [9]
    WEI T C, ZHU Y N, AN X Q, et al. Defect modulation of Z-scheme TiO2/Cu2O photocatalysts for durable water splitting[J]. ACS Catalyst,2019,9(9):8346-8354. doi: 10.1021/acscatal.9b01786
    [10]
    KONG H J, KIM K H, KIM S, et al. Unveiling the role of tetragonal BiVO4 as a mediator for dual phase BiVO4/g-C3N4 composite photocatalysts enabling highly efficient water oxidation via Z-scheme charge transfer[J]. Journal of Materials Chemistry A,2019,7(46):26279-26284. doi: 10.1039/C9TA10704E
    [11]
    HU J D, CHEN C, ZHENG Y, et al. Spatially separating redox centers on Z-scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly effcient photocatalytic hydrogen evolution[J]. Small,2020,16(37):2002988. doi: 10.1002/smll.202002988
    [12]
    ZHU M S, SUN Z C, FUJITSUKA M, et al. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light[J]. Angewandte Chemie International Edition,2018,57(8):2160-2164. doi: 10.1002/anie.201711357
    [13]
    LIN L H, YU Z Y, WANG X C. Crystalline carbon nitride semiconductors for photocatalytic water splitting[J]. Angewandte Chemie International Edition,2019,58(19):6164-6175. doi: 10.1002/anie.201809897
    [14]
    WANG J C, YAO H C, FAN Z Y, et al. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation[J]. ACS Applied Materials & Interfaces,2016,8(6):3765-3775. doi: 10.1021/acsami.5b09901
    [15]
    NIU P, QIAO M, LI Y F, et al. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution[J]. Nano Energy,2018,44:73-81. doi: 10.1016/j.nanoen.2017.11.059
    [16]
    ZOU X J, DONG Y Y, LI X Y, et al. Inorganic-organic photocatalyst BiPO4/g-C3N4 for efficient removal of gaseous toluene under visible light irradiation[J]. Catalysis Communications,2015,69:109-113. doi: 10.1016/j.catcom.2015.04.035
    [17]
    SUN Z C, YU Z Q, LIU Y Y, et al. Construction of 2D/2D BiVO4/g-C3N4 nanosheet heterostructures with improved photocatalytic activity[J]. Journal of Colloid and Interface Science,2019,533:251-258. doi: 10.1016/j.jcis.2018.08.071
    [18]
    刘成宝, 唐飞, 朱晨, 等. WO3-Ag/g-C3N4 Z 型光催化材料的合成及其光催化性能研究[J]. 复合材料学报, 2021, 38(1):209-220. doi: 10.13801/j.cnki.fhclxb.20200622.004

    LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/g-C3N4 Z-scheme photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(1):209-220(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200622.004
    [19]
    胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6):1401-1410. doi: 10.13801/j.cnki.fhclxb.20191217.001

    HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(6):1401-1410(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191217.001
    [20]
    孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2):591-600. doi: 10.13801/j.cnki.fhclxb.20201011.001

    MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica,2021,38(2):591-600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201011.001
    [21]
    YU J G, YU J C, LEUNG M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis,2003,217(1):69-78. doi: 10.1016/S0021-9517(03)00034-4
    [22]
    XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. Journal of Physical Chemistry C,2011,115(15):7355-7363. doi: 10.1021/jp200953k
    [23]
    TAN H Q, ZHAO Z, NIU M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale,2014,6(17):10216-10223. doi: 10.1039/C4NR02677B
    [24]
    左士祥, 曹晓曼, 吴红叶, 等. g-C3N4 量子点-TiO2/导电凹凸棒石复合材料的制备及其光催化性能[J]. 复合材料学报, 2021, 38(8):2706-2714. doi: 10.13801/j.cnki.fhclxb.20201011.003

    ZUO Shixiang, CAO Xiaoman, WU Hongye, et al. Preparation of g-C3N4 quantum dot-TiO2/conductive attapulgite composites and their photocatalytic performance[J]. Acta Materiae Compositae Sinica,2021,38(8):2706-2714(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201011.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1150) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return