Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
MA Zhiyuan, GUAN Mingjie. Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 419-427. doi: 10.13801/j.cnki.fhclxb.20220120.004
Citation: MA Zhiyuan, GUAN Mingjie. Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 419-427. doi: 10.13801/j.cnki.fhclxb.20220120.004

Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite

doi: 10.13801/j.cnki.fhclxb.20220120.004
Funds:  Jiangsu Agricultural Science and Technology Innovation Fund (CX(19)3036)
  • Received Date: 2021-11-12
  • Accepted Date: 2022-01-10
  • Rev Recd Date: 2021-12-18
  • Available Online: 2022-01-20
  • Publish Date: 2023-01-15
  • Carbon fiber/flattened bamboo composite is a new kind of composite material to improve the application of bamboo in engineering products. The bonding interface is the bridge of the transfer force of composite materials, and the bonding property of the bonding interface is the key to the overall mechanical properties of composite materials. The effects of hydroxymethylated resorcinol (HMR) coupling agent on the bonding properties of carbon fiber/flattened bamboo composite were studied. The specimens were divided into four groups according to different forms and treatment methods of flattened bamboo surface. The vertical density distribution, strain distribution, stress transfer and microstructure of the bonding interface of carbon fiber/flattened bamboo composite were measured and analyzed. Results show that the bonding strength of carbon fiber/flattened bamboo composite after treatment with HMR coupling agent is increased by 42.7% compared with that of the untreated group. The bonding interface density of carbon fiber/flattened bamboo composite increases, the thickness of the bondline is wider and the strain distribution and stress transfer more evenly. HMR coupling agent plays a good role in bridging and acts synergistically with carbon fiber to make the stress transfer at the bonding interface more continuous and improves the bonding properties of carbon fiber/flattened bamboo composite.

     

  • loading
  • [1]
    人行国际司青年课题组. 主要国家实现“碳中和”路线图[N]. 第一财经日报, 2021-02-04(A11).

    Youth Research Group of International Department, People's Bank of China. Major countries to achieve "carbon neutral" roadmap[N]. China Business News, 2021-02-04(A11) (in Chinese).
    [2]
    余晶. 绿色建筑行业的发展趋势—从低碳走向碳中和[J]. 混凝土世界, 2011(7):38-43.

    YU Jing. Development trend of green building industry from low carbon to carbon neutral[J]. Concrete World,2011(7):38-43(in Chinese).
    [3]
    江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5):1-13.

    JIANG Yi, HU Shan. Path to achieve carbon neutrality in China's building sector[J]. Heating Ventilating & Air Conditioning,2021,51(5):1-13(in Chinese).
    [4]
    刘光胜. 大力发展竹建材是新时代的需要[J]. 中国林业产业, 2020(7):44-47.

    LIU Guangsheng. Vigorously developing bamboo building materials is the need of the new era[J]. Chinese Forestry Industry,2020(7):44-47(in Chinese).
    [5]
    李海涛, 宣一伟, 许斌, 等. 竹材在土木工程领域的应用[J]. 林业工程学报, 2020, 5(6):1-10.

    LI Haitao, XUAN Yiwei, XU Bin, et al. Application of bamboo in civil engineering[J]. Journal of Forestry Engineering,2020,5(6):1-10(in Chinese).
    [6]
    李延军, 娄志超. 竹材展平技术研究现状及展望[J]. 林业工程学报, 2021, 6(4):14-23.

    LI Yanjun, LOU Zhichao. Research status and prospect of bamboo flattening technology[J]. Journal of Forestry Engineering,2021,6(4):14-23(in Chinese).
    [7]
    LOU Z C, YUAN T C, WANG Q Y, et al. Fabrication of crack-free flattened bamboo and its macro-/micro- morphological and mechanical properties[J]. Journal of Renewable Materials,2021,9(5):959-977. doi: 10.32604/jrm.2021.014285
    [8]
    贺福, 杨永岗. 碳纤维增强木材复合材料[J]. 化工新型材料, 2003, 31(10):9-12. doi: 10.3969/j.issn.1006-3536.2003.10.004

    HE Fu, YANG Yonggang. Carbon fiber reinforced wood composite[J]. New Chemical Materials,2003,31(10):9-12(in Chinese). doi: 10.3969/j.issn.1006-3536.2003.10.004
    [9]
    BERGER D, BRABANDT D, BAKIR C, et al. Effects of defects in series production of hybrid CFRP lightweight components-detection and evaluation of quality critical characteristics[J]. Measurement,2017,95:389-394. doi: 10.1016/j.measurement.2016.10.003
    [10]
    LIU Y, GUAN M, CHEN X, et al. Flexural properties evaluation of carbon-fiber fabric reinforced poplar/eucalyptus composite plywood formwork[J]. Composite Structures,2019,224:111073. doi: 10.1016/j.compstruct.2019.111073
    [11]
    黄桂秋. 竹材加固的力学性能试验研究分析[D]. 上海: 上海交通大学, 2013.

    HUANG Guiqiu. Experimental study and analysis of mechanical properties of bamboo reinforcement[D]. Shanghai: Shanghai Jiao Tong University, 2013(in Chinese).
    [12]
    吴祐德, 孟鑫淼, 冯鹏, 等. 基于表观属性的毛竹轴向抗压强度预测模型研究[J]. 工业建筑, 2020, 50(4):71-75.

    WU Youde, MENG Xinmiao, FENG Peng, et al. Prediction model of bamboo axial compressive strength based on apparent properties[J]. Industrial Buildings,2020,50(4):71-75(in Chinese).
    [13]
    HUANG G Q, HUANG Z, JIANG J, et al. Performances of carbon fiber cloth reinforced bamboos[J]. Applied Mechanics and Materials,2012,174-177:1459-1462. doi: 10.4028/www.scientific.net/AMM.174-177.1459
    [14]
    XU D, YANG W, LI X, et al. Surface nanostructure and wettability inducing high bonding strength of polyphenylene sulfide-aluminum composite structure[J]. Applied Surface Science,2020,515:145996. doi: 10.1016/j.apsusc.2020.145996
    [15]
    GAN Y X. Effect of interface structure on mechanical properties of advanced composite materials[J]. International Journal of Molecular Sciences,2009,10(12):5115-5134. doi: 10.3390/ijms10125115
    [16]
    林乐乐. 炭纤维表面特性对复合材料表面性能的影响研究[J]. 炭素技术, 2020, 39(4):57-61. doi: 10.14078/j.cnki.1001-3741.2020.04.013

    LIN Lele. Study on the influence of carbon fiber surface properties on the surface properties of composites[J]. Carbon Technology,2020,39(4):57-61(in Chinese). doi: 10.14078/j.cnki.1001-3741.2020.04.013
    [17]
    GODARA A, MEZZO L, LUIZI F, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites[J]. Carbon,2009,47(12):2914-2923. doi: 10.1016/j.carbon.2009.06.039
    [18]
    江泽慧, 于文吉, 余养伦. 竹材表面润湿性研究[J]. 竹子研究汇刊, 2005, 24(4):31-38.

    JIANG Zehui, YU Wenji, YU Yanglun. A study on the wettability of bamboo wood surface[J]. Journal of Bamboo Research,2005,24(4):31-38(in Chinese).
    [19]
    CHEN H, ZHANG Y, YANG X, et al. A comparative study of the microstructure and water permeability between flattened bamboo and bamboo culm[J]. Journal of Wood Science,2019,65(1):64. doi: 10.1186/s10086-019-1842-0
    [20]
    关明杰, 刘仪, 朱越强, 等. 超声对竹材表面性能和竹层积材胶合性能的影响[J]. 竹子学报, 2018, 37(1):8-15. doi: 10.3969/j.issn.1000-6567.2018.01.002

    GUAN Mingjie, LIU Yi, ZHU Yueqiang, et al. Effect of ultrasonic on surface properties and bonding properties of bamboo laminates[J]. Journal of Bamboo,2018,37(1):8-15(in Chinese). doi: 10.3969/j.issn.1000-6567.2018.01.002
    [21]
    MA Q, LIU Z, XIAO H L, et al. Tensile properties of surface modified bamboo slices coated with epoxy resin considering the corrosion of acid alkali environment[J]. Wood Research,2021,66(2):183-194. doi: 10.37763/wr.1336-4561/66.2.183194
    [22]
    OKKONEN E A, VICK C B. Bondability of salvaged yellow-cedar with phenol-resorcinol adhesive and hydroxymethylated resorcinol coupling agent[J]. Forest Products Journal,1999,48(11-12):81-85.
    [23]
    VICK C B. Coupling agent improves durability of PRF bonds to CCA-treated southern pine[J]. Forest Products Journal,1995,45(3):78-84.
    [24]
    任一萍, 王正, 王志玲. 竹材表面处理对胶合性能的影响[J]. 粘接, 2009, 30(2):33, 34-37.

    REN Yiping, WANG Zheng, WANG Zhiling. Effect of surface treatment on bonding properties of bamboo[J]. Bonding,2009,30(2):33, 34-37(in Chinese).
    [25]
    Deutsches Institut fur Normung E.V. (DIN). Adhesives for load-bearing timber structures—Test methods—Part 1: Determination of bond strength in longitudinal tensile shear: DIN EN 302-1—2013[S]. Berlin: Deutsches Institut fur Normung E.V. (DIN), 2013.
    [26]
    陈泽明, 曹先启, 李博弘, 等. 水煮处理对环氧树脂胶黏剂热膨胀性能的影响[J]. 化学与黏合, 2017, 39(6): 424-426.

    CHEN Zeming, CAO Xianqi, LI Bohong, et al. Effect of boiling treatment on thermal expansion properties of epoxy resin adhesives[J]. Chemistry and Viscosity, 2017, 39(6): 424-426(in Chinese).
    [27]
    刘焕荣, 杨晓梦, 张秀标, 等. 竹展平板拉伸剪切胶合性能[J]. 林业工程学报, 2021, 6(1):68-72.

    LIU Huanrong, YANG Xiaomeng, ZHANG Xiubiao, et al. The tensile shear bonding property of flattened bamboo sheet[J]. Journal of Forestry Engineering,2021,6(1):68-72(in Chinese).
    [28]
    HE Q, ZHAN T, ZHANG H, et al. Robust and durable bonding performance of bamboo induced by high voltage electrostatic field treatment[J]. Industrial Crops and Products,2019,137:149-156. doi: 10.1016/j.indcrop.2019.05.010
    [29]
    WANG F, LU M, ZHOU S, et al. Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers[J]. Molecules, 2019, 24(15): 2682.
    [30]
    LIANG X, GAO X, ZHANG H, et al. Interlaminar shear behaviors of 2D needled C/SiC composites under compressive and tensile loading[J]. Ceramics International,2020,47(4):4954-4962.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (870) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return