Volume 40 Issue 8
May  2023
Turn off MathJax
Article Contents
ZHANG Dongyan, DU Keke, WU Xiaofeng, ZHANG Shuangbao. Research progress of functional composite electrode materials based on nanocellulose[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4321-4330. doi: 10.13801/j.cnki.fhclxb.20230228.001
Citation: ZHANG Dongyan, DU Keke, WU Xiaofeng, ZHANG Shuangbao. Research progress of functional composite electrode materials based on nanocellulose[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4321-4330. doi: 10.13801/j.cnki.fhclxb.20230228.001

Research progress of functional composite electrode materials based on nanocellulose

doi: 10.13801/j.cnki.fhclxb.20230228.001
Funds:  National Natural Science Foundation of China (32171707); Beijing Natural Science Foundation of China (6202024)
  • Received Date: 2022-12-09
  • Accepted Date: 2023-02-16
  • Rev Recd Date: 2023-02-10
  • Available Online: 2023-03-01
  • Publish Date: 2023-08-15
  • The ongoing surge in demand for energy and the increasing environmental crisis makes the high-performance energy storage device become a research hotspot in recent years. Based on the power and energy density, energy storage devices can be divided into electrochemical capacitors, secondary batteries, and fuel cells, etc. Electrode material play an important role in the preparation of energy storage with green environment protection and high performance. Nanocellulose has great application potential and development prospect in the preparation and performance improvement of energy storage materials due to their natural abundance, environmental sustainability, high specific surface area, excellent mechanical properties and biocompatibility. In this paper, the classification, preparation, modification of nanocellulose and nanocellulose composites were summarized, the application and research progress of the mixing of nanocellulose with electroactive substances and the preparation of hydrogel, aerogel, paper/film composites based on nanocellulose and as carbon precursors in electrode materials were mainly introduced.


  • loading
  • [1]
    NARGATTI K I, SUBHEDAR A R, AHANKARI S S, et al. Nanocellulose-based aerogel electrodes for supercapacitors: A review[J]. Carbohydrate Polymers,2022,297:120039. doi: 10.1016/j.carbpol.2022.120039
    CAO L H, LI H L, XU Z X, et al. Comparison of the heteroatoms-doped biomass-derived carbon prepared by one-step nitrogen-containing activator for high performance supercapacitor[J]. Diamond and Related Materials,2021,114:108316. doi: 10.1016/j.diamond.2021.108316
    KIM J H, SHIM B S, KIM H S, et al. Review of nanocellulose for sustainable future materials[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2015,2(2):197-213. doi: 10.1007/s40684-015-0024-9
    NOREMYLIA M B, HASSAN M Z, ISMAIL Z. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review[J]. International Journal of Biological Macromolecules,2022,206:954-976. doi: 10.1016/j.ijbiomac.2022.03.064
    YANG Y, CHEN Z, ZHANG J, et al. Preparation and applications of the cellulose nanocrystal[J]. International Journal of Polymer Science,2019,2019:1767028.
    贺晓凌, 张先楠, 孟红艳, 等. 响应面法优化产细菌纤维素菌发酵条件[J]. 天津工业大学学报, 2020, 39(3):54-60. doi: 10.3969/j.issn.1671-024x.2020.03.009

    HE Xiaoling, ZHANG Xiannan, MENG Hongyan, et al. The response surface method optimizes the fermentation conditions of bacteria-producing cellulose bacteria[J]. Jour-nal of Tianjin Polytechnic University,2020,39(3):54-60(in Chinese). doi: 10.3969/j.issn.1671-024x.2020.03.009
    WANG J, LIU X, JIN T, et al. Preparation of nanocellulose and its potential in reinforced composites: A review[J]. Journal of Biomaterials Science-Polymer Edition,2019,30(11):919-946. doi: 10.1080/09205063.2019.1612726
    HERRICK F W, CASEBIER R L, HAMILTON J K, et al. Microfibrillated cellulose: Morphology and accessibility[J]. Journal of Applied Polymer Science,1983, 37: 797-813.
    WANG Q, ZHAO X, ZHU J Y. Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs)[J]. Industrial & Engineering Chemistry Research,2014,53(27):11007-11014.
    LIU Y, GUO B, XIA Q, et al. Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields[J]. ACS Sustainable Chemistry & Engineering,2017,5(9):7623-7631.
    杨严仲, 高旭, 席蓓, 等. 纳米纤维素在复合材料领域的研究进展[J]. 山东化工, 2022, 51(16):118-120. doi: 10.3969/j.issn.1008-021X.2022.16.033

    YANG Yanzhong, GAO Xu, XI Bei, et al. Research progress of nanocellulose in the field of composite materials[J]. Shandong Chemical Industry,2022,51(16):118-120(in Chinese). doi: 10.3969/j.issn.1008-021X.2022.16.033
    KULANDAIVALU S, SULAIMAN Y. Recent advances in layer-by-layer assembled conducting polymer based composites for supercapacitors[J]. Energies,2019,12(11):2107. doi: 10.3390/en12112107
    MO M M, CHEN C C, GAO H, et al. Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors[J]. Electrochimica Acta,2018,269:11-20. doi: 10.1016/j.electacta.2018.02.118
    EL-SAID W A, ABDELSHAKOUR M, CHOI J H, et al. Application of conducting polymer nanostructures to electrochemical biosensors[J]. Molecules,2020,25(2):307. doi: 10.3390/molecules25020307
    WANG Z H, TAMMELA P, ZHANG P, et al. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications[J]. Nanoscale,2014,6(21):13068-13075. doi: 10.1039/C4NR04642K
    MA Y P, XIE X B, YANG W Y, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors[J]. Advanced Composites and Hybrid Materials,2021,4(4):906-924. doi: 10.1007/s42114-021-00358-2
    WU M S, XU W H. Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors[J]. Journal of Power Sources,2015,274:1055-1062. doi: 10.1016/j.jpowsour.2014.10.133
    WEI Q L, XIONG F Y, TAN S S, et al. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage[J]. Advanced Materials,2017,29(20):1602300. doi: 10.1002/adma.201602300
    CHEN Y, LU K, SONG Y, et al. A skin-inspired stretchable, self-healing and electro-conductive hydrogel with asynergistic triple network for wearable strain sensors applied in human-motion detection[J]. Nanomaterials (Basel),2019,9(12):1737. doi: 10.3390/nano9121737
    HSU H H, LIU Y Q, WANG Y, et al. Mussel-inspired autonomously self-healable all-in-one supercapacitor with biocompatible hydrogel[J]. ACS Sustainable Chemistry & Engineering,2020,8(18):6935-6948.
    HAN J Q, DING Q Q, MEI C T, et al. An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes[J]. Electrochimica Acta,2019,318:660-672. doi: 10.1016/j.electacta.2019.06.132
    LI Z Y, LI X, JIANG Y F, et al. Nanocellulose composite gel with high ionic conductivity and long service life for flexible zinc-air battery[J]. Polymer Testing,2021,104:107380. doi: 10.1016/j.polymertesting.2021.107380
    HE W, QIANG H, LIANG S, et al. Hierarchically porous wood aerogel/polypyrrole (PPy) composite thick electrode for supercapacitor[J]. Chemical Engineering Journal,2022,446(5):137331.
    葛溢. 基于纤维素/石墨烯复合气凝胶的水系锌离子电池正极材料制备与性能[D]. 南昌: 东华理工大学, 2018: 73.

    GE Yi. Preparation and properties of zinc ion battery cathode materials based on cellulose/graphene composite aerogel[D]. Nanchang: East China University of Technology, 2018: 73(in Chinese).
    HU L, CHOI J W, YANG Y, et al. Highly conductive paper for energy-storage devices[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(51):21490-21494. doi: 10.1073/pnas.0908858106
    JABBOUR L, DESTRO M, CHAUSSY D, et al. Flexible cellulose/LiFePO4 paper-cathodes: Toward eco-friendly all-paper Li-ion batteries[J]. Cellulose,2013,20(1):571-582. doi: 10.1007/s10570-012-9834-x
    FANG Z, HOU G, CHEN C, et al. Nanocellulose-based films and their emerging applications[J]. Current Opinion in Solid State and Materials Science,2019,23(4):100764. doi: 10.1016/j.cossms.2019.07.003
    WANG Z, PAN R, RUAN C, et al. Redox-active separators for lithium-ion batteries[J]. Advanced Science (Weinh),2018,5(3):1700663. doi: 10.1002/advs.201700663
    WALTERS C M, MATHARU G K, HAMAD W Y, et al. Chiral nematic cellulose nanocrystal/germania and carbon/germania composite aerogels as supercapacitor materials[J]. Chemistry of Materials,2021,33(13):5197-5209. doi: 10.1021/acs.chemmater.1c01272
    LIU Y, CHEN J, LIU Z, et al. Facile fabrication of Fe3O4 nanoparticle/carbon nanofiber aerogel from Fe-ion cross-linked cellulose nanofibrils as anode for lithium-ion battery with superhigh capacity[J]. Journal of Alloys and Compounds,2020,829:154541. doi: 10.1016/j.jallcom.2020.154541
    NGUYEN H K, BAE J, HUR J, et al. Tailoring of aqueous-based carbon nanotube-nanocellulose films as self-standing flexible anodes for lithium-ion storage[J]. Nanomaterials,2019,9(4):655. doi: 10.3390/nano9040655
    HUANG Y, ZHU C L, YANG J Z, et al. Recent advances in bacterial cellulose[J]. Cellulose,2014,21(1):1-30. doi: 10.1007/s10570-013-0088-z
    YU W D, LIN W R, SHAO X F, et al. High performance supercapacitor basedon Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose[J]. Journal of Power Sources,2014,272:137-143. doi: 10.1016/j.jpowsour.2014.08.064
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (141) PDF downloads(6) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint