Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
TIAN Tian, FU Yile, GUAN Li, et al. Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5792-5802. doi: 10.13801/j.cnki.fhclxb.20230314.001
Citation: TIAN Tian, FU Yile, GUAN Li, et al. Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5792-5802. doi: 10.13801/j.cnki.fhclxb.20230314.001

Preparation of sodium alginate-carboxymethyl cellulose-graphene oxide composite aerogel for adsorption of Pb(II) ion

doi: 10.13801/j.cnki.fhclxb.20230314.001
Funds:  National Natural Science Foundation of China (21807086); Natural Science Basic Research Program of Shaanxi (2022JM-096)
  • Received Date: 2022-11-29
  • Accepted Date: 2023-03-03
  • Rev Recd Date: 2023-02-20
  • Available Online: 2023-03-15
  • Publish Date: 2023-10-15
  • Exploiting adsorbents with excellent adsorption activity, good durability and environment friendly is still the core focus of water pollution treatment. Herein, in this study, sodium alginate (SA), carboxymethyl cellulose (CMC), and graphene oxide (GO) were used as raw materials to frame a SA-CMC-GO composite aerogel with a 3D network structure by a sol-gel and freeze-drying method. The functional group structure and microstructure of SA-CMC-GO composite aerogel were tested and analyzed by SEM, FTIR and XRD. Various parameters affecting the removal of Pb2+ such as pH, temperature and contact time were optimized by using a series of batch adsorption experiments. The results show that the adsorption amount of Pb2+ by the composite aerogel increases with the increase of pH=2-5. The adsorption process is a spontaneous exothermic process and the experimental data of the adsorption process are more fitted to Langmuir isotherm, the theoretical maximum adsorption capacity of Pb2+ on SA-CMC-GO composite aerogel is 272.5 mg·g−1. Adsorption kinetics studies indicate the adsorption of Pb2+ by the SA-CMC-GO composite aerogel shows rapid uptake rates and reaches equilibrium within 60 min. The pseudo-second-order kinetic model coincides with the adsorption behavior of the composite aerogel. Furthermore, the composite aerogel exhibited better reusability for five adsorption and desorption cycles with highly adsorption properties. The results imply that the new SA-CMC-GO composite aerogel could be potentially applied as an effective and rapid adsorbent for Pb2+ removal from aqueous solutions.

     

  • loading
  • [1]
    YANG W X, HAN Y, LI C H, et al. Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal[J]. Chemical Engineering Journal,2019,375:122076. doi: 10.1016/j.cej.2019.122076
    [2]
    ZHANG S Y, HAN X S, CAI H Z, et al. Aramid nanofibers/WS2 nanosheets co-assembled aerogels for efficient and stable Pb (II) adsorption in harsh environments[J]. Chemical Engineering Journal,2022,450:138268. doi: 10.1016/j.cej.2022.138268
    [3]
    LUO J Q, FAN C J, ZHOU X D. Functionalized graphene oxide/carboxymethyl chitosan composite aerogels with strong compressive strength for water purification[J]. Journal of Applied Polymer Science,2020,138(12):50065-50079.
    [4]
    李继丰, 闫文静, 方婷, 等. C6位羧基纤维素制备及其对Cu2+吸附性能[J]. 复合材料学报, 2022, 39(3):1280-1290.

    LI Jifeng, YAN Wenjing, FANG Ting, et al. Preparation of C6 carboxylic cellulose and adsorption for Cu2+[J]. Acta Materiae Compositae Sinica,2022,39(3):1280-1290(in Chinese).
    [5]
    LIU Q, LI S S, YU H H, et al. Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal[J]. Journal of Colloid and Interface Science,2020,561:211-219. doi: 10.1016/j.jcis.2019.11.074
    [6]
    徐晓燕, 张鹏, 朱静, 等. 水环境中天然有机物对纳米颗粒吸附铅和镉的不同作用[J]. 环境化学, 2021, 40(2):571-582. doi: 10.7524/j.issn.0254-6108.2020052501

    XU Xiaoyan, ZHANG Peng, ZHU Jing, et al. The varying roles of natural organic matters on nanoparticles adsorbing Cd2+ and Pb2+ in water environment[J]. Environmental Chemistry,2021,40(2):571-582(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052501
    [7]
    牛乙涛, 包国庆, 吴纯鑫, 等. 功能化纳米复合材料Fe3O4@SiO2-3-氨丙基三甲氧基硅烷的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(6): 3350-3365.

    NIU Yitao, BAO Guoqing, WU Chunxin, et al. Preparation of functionalized nanocomposites Fe3O4@SiO2-3-aminopropyltrimethoxysilane and its adsorption to Pb(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3350-3365(in Chinese).
    [8]
    JIAO G J, MA J L, ZHANG J Q, et al. High-efficiency capture and removal of phosphate from wastewater by 3D hierarchical functional biomass-derived carbon aerogel[J]. Science of the Total Environment,2022,827:154343. doi: 10.1016/j.scitotenv.2022.154343
    [9]
    MO L T, TAN Y, SHEN Y L, et al. Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu(II)[J]. Chemosphere,2022,291:132887. doi: 10.1016/j.chemosphere.2021.132887
    [10]
    LEI C Y, WEN F B, CHEN J M, et al. Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution[J]. Polymer,2021,213:123316. doi: 10.1016/j.polymer.2020.123316
    [11]
    GE X S, SHAN Y N, WU L, et al. High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide[J]. Carbohydrate Polymers,2018,197:277-283. doi: 10.1016/j.carbpol.2018.06.014
    [12]
    QIANG X H, GUO X, SU H X, et al. In situ nanoarchitectonics of magnesium hydroxide particles for property regulation of carboxymethyl cellulose/poly(vinyl alcohol) aerogels[J]. RSC Advances,2021,11(56):35197-35204. doi: 10.1039/D1RA06556D
    [13]
    翟红侠, 赵越, 李超凡, 等. 氨基改性SiO2气凝胶去除Cu(II)的性能与机制[J]. 复合材料学报, 2023, 40(8): 3981-3992.

    ZHAI Hongxia, ZHAO Yue, LI Chaofan, et al. Performance and mechanism of the amine-modified silica aerogel for the removal of Cu(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 3981-3992(in Chinese).
    [14]
    张春梅, 杨婷婷, 陆桂花, 等. 纳米纤维素/壳聚糖气凝胶对六价铬的吸附性能[J]. 功能材料, 2022, 53(10):10180-10184.

    ZHANG Chunmei, YANG Tingting, LU Guihua, et al. Adsorption properties of cellulose nanocrystalline/chitosan aerogels for hexavalent chromium[J]. Journal of Functional Materials,2022,53(10):10180-10184(in Chinese).
    [15]
    HAN X H, LIANG J C, FUKUDA S, et al. Sodium alginate-silica composite aerogels from rice husk ash for efficient absorption of organic pollutants[J]. Biomass and Bioenergy,2022,159:106424. doi: 10.1016/j.biombioe.2022.106424
    [16]
    DONG K Q, XU K J, WEI N S, et al. Three-dimensional porous sodium alginate/gellan gum environmentally friendly aerogel: Preparation, characterization, adsorption, and kinetics studies[J]. Chemical Engineering Research and Design,2022,179:227-236. doi: 10.1016/j.cherd.2022.01.027
    [17]
    GAO C, WANG X L, AN Q D, et al. Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions[J]. Carbohydrate Polymers,2021,256:117564. doi: 10.1016/j.carbpol.2020.117564
    [18]
    KONG Y, ZHUANG Y, HAN K, et al. Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel[J]. Colloids and Surfaces A,2020,588:124360. doi: 10.1016/j.colsurfa.2019.124360
    [19]
    CHEN P, XIE F W, TANG F Z, et al. Glycerol plasticisation of chitosan/carboxymethyl cellulose composites: Role of interactions in determining structure and properties[J]. International Journal of Biological Macromolecules,2020,163:683-693. doi: 10.1016/j.ijbiomac.2020.07.004
    [20]
    ELTAWEIL A S, ELGARHY G S, EL-SUBRUITI G M, et al. Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye[J]. International Journal of Biological Macromolecules,2020,154:307-318. doi: 10.1016/j.ijbiomac.2020.03.122
    [21]
    LUO J Q, FAN C J, XIAO Z, et al. Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity[J]. Colloids and Surfaces A,2019,578:123584. doi: 10.1016/j.colsurfa.2019.123584
    [22]
    LI J J, TAN S C, XU Z Y. Anisotropic nanocellulose aerogel loaded with modified UiO-66 as efficient adsorbent for heavy metal ions removal[J]. Nanomaterials,2020,10(6):1114. doi: 10.3390/nano10061114
    [23]
    XU W L, CHEN S, ZHU Y N, et al. Preparation of hyperelastic graphene/carboxymethyl cellulose composite aerogels by ambient pressure drying and its adsorption applications[J]. Journal of Materials Science,2020,55(24):10543-10557. doi: 10.1007/s10853-020-04720-5
    [24]
    LIU P, CHEN M G, XIONG C G, et al. Flexible and highly sensitive graphene/carboxymethyl cellulose films for bending sensing[J]. Journal of Materials Science: Materials in Electronics,2020,31(17):14118-14127. doi: 10.1007/s10854-020-03966-8
    [25]
    LI W Q, ZHANG L P, HU D, et al. A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+[J]. International Journal of Biological Macromolecules,2021,187:922-930. doi: 10.1016/j.ijbiomac.2021.07.181
    [26]
    李琦琪, 杨桂芳, 刘以凡, 等. 氨基改性纤维素气凝胶吸附Pb2+的研究[J]. 纤维素科学与技术, 2022, 30(1):34-46.

    LI Qiqi, YANG Guifang, LIU Yifan, et al. Adsorption behavior of Pb2+ on amino-modified cellulose aerogel[J]. Journal of Cellulose Science and Technology,2022,30(1):34-46(in Chinese).
    [27]
    LIU T, GOU S H, HE Y, et al. N-methylene phosphonic chitosan aerogels for efficient capture of Cu2+ and Pb2+ from aqueous environment[J]. Carbohydrate Polymers,2021,269:118355. doi: 10.1016/j.carbpol.2021.118355
    [28]
    张宏伟, 谢鸿, 肖欣荣, 等. 不同氧化程度氧化石墨烯/聚乙烯醇气凝胶对亚甲基蓝的吸附[J]. 复合材料学报, 2021, 38(9):2788-2795. doi: 10.13801/j.cnki.fhclxb.20201203.002

    ZHANG Hongwei, XIE Hong, XIAO Xinrong, et al. Adsorption of methylene blue by graphene oxide/polyvinyl alcohol aerogels with different oxidation degrees[J]. Acta Materiae Compositae Sinica,2021,38(9):2788-2795(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201203.002
    [29]
    YANG P, YANG L, WANG Y, et al. An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation-π interactions[J]. Journal of Materials Chemistry A,2019,7(2):531-539. doi: 10.1039/C8TA07326K
    [30]
    WANG Z G, SONG L, WANG Y Q, et al. Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications[J]. Chemical Engineering Journal,2019,371:138-144. doi: 10.1016/j.cej.2019.04.022
    [31]
    HOSSEINI H, ZIRAKJOU A, MCCLEMENTS D J, et al. Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide[J]. Journal of Hazardous Materials,2022,421:126752. doi: 10.1016/j.jhazmat.2021.126752
    [32]
    ZHOU Y Q, GAO Y, WANG H L, et al. Versatile 3D reduced graphene oxide/poly(amino-phosphonic acid) aerogel derived from waste acrylic fibers as an efficient adsorbent for water purification[J]. Science of the Total Environment,2021,776:145973. doi: 10.1016/j.scitotenv.2021.145973
    [33]
    XIANG C, WANG C, GUO R H, et al. Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes[J]. Journal of Materials Science,2019,54(2):1872-1883. doi: 10.1007/s10853-018-2900-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (862) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return