Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3845-3851. doi: 10.13801/j.cnki.fhclxb.20210917.002
Citation: WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3845-3851. doi: 10.13801/j.cnki.fhclxb.20210917.002

Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B

doi: 10.13801/j.cnki.fhclxb.20210917.002
  • Received Date: 2021-08-02
  • Accepted Date: 2021-09-04
  • Rev Recd Date: 2021-09-01
  • Available Online: 2021-09-17
  • Publish Date: 2022-08-31
  • In order to reduce the recombination rate of graphite phase carbon nitride (g-C3N4) photocatalyst′s electron and holes, the Bi2MoS2O4/g-C3N4 heterojunction was successfully prepared by the impregnation method. The absorption edge of the modified catalyst is red-shifted from 470 nm to 490 nm as measured by ultraviolet-visible diffuse reflectance spectroscopy. The effects of loading ratio, catalyst dosage and pH on the visible light degradation rate of Rhodamine B were discussed. When the mass ratio of Bi2MoS2O4 to g-C3N4 is 18wt% and the catalyst dosage is 0.36 g/L, the catalyst can completely degrade Rhodamine B within 15 min. Free radical capture experiments and energy band analysis results show that the system has formed a type II electron transfer mechanism, the main active species is •O2.

     

  • loading
  • [1]
    HASANPOUR M, HATAMI M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study[J]. Journal of Molecular Liquids,2020,309:113094-113114. doi: 10.1016/j.molliq.2020.113094
    [2]
    JAWAD A H, MAMAT N F H, HAMEED B H, et al. Biofilm of cross-linked chitosan-ethylene glycol diglycidyl ether for removal of reactive red 120 and methyl orange: Adsorption and mechanism studies[J]. Journal of Environmental Chemical Engineering,2019,7(2):102965-102976. doi: 10.1016/j.jece.2019.102965
    [3]
    CHOWDHURY M F, KHANDAKER S, SARKER F, et al. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review[J]. Jour-nal of Molecular Liquids, 2020, 318: 114061-114080.
    [4]
    陈嘉川, 戢德贤, 林兆云, 等. 微晶纤维素基复合材料的制备及其对亚甲基蓝的催化降解性能[J]. 复合材料学报, 2020, 37(12):3184-3193.

    CHEN Jiachuan, JI Dexian, LIN Zhaoyun, et al. Preparation of modified microcrystalline cellulose based composite and its catalytic degradation performance on methylene blue[J]. Acta Materiae Compositae Sinica,2020,37(12):3184-3193(in Chinese).
    [5]
    王儒杰, 余锡孟, 王芳芳, 等. 竹炭基铈掺杂氧化锌制备及催化降解亚甲基蓝[J]. 复合材料学报, 2021, 38(6):1890-1894.

    WANG Rujie, YU Ximeng, WANG Fangfang, et al. Preparation of carbon supported cerium doped zinc oxide compo-site material and its photocatalytic properties study in degradation of methylene blue dye[J]. Acta Materiae Compositae Sinica,2021,38(6):1890-1894(in Chinese).
    [6]
    ZHAO X, YOU Y, HUANG S, et al. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light[J]. Applied Catalysis B-Environmental,2020,278:119251-119261. doi: 10.1016/j.apcatb.2020.119251
    [7]
    LI Y F, YOU Y, ZHOU M H, et al. Recent advances in g-C3N4-based heterojunction photocatalysts[J]. Journal of Mater-ials Science & Technology, 2020, 56: 1-17.
    [8]
    SHI R, XU T, YAN L, et al. Enhancement of visible light photocatalytic performances of Bi2MoS2O4 nanoplates[J]. Catalysis Science& Technology,2013,3(7):1757-1764.
    [9]
    HU S W, YANG L W, TIAN Y, et al. Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity[J]. Applied Catalysis B-Environmental,2015,163:611-622. doi: 10.1016/j.apcatb.2014.08.023
    [10]
    SUDHAIK A, RAIZADA P, SINGH P, et al. Highly effective degradation of imidacloprid by H2O2/fullerene decorated P-doped g-C3N4 photocatalyst[J]. Journal of Environmental Chemical Engineering,2020,8(6):104483-104494. doi: 10.1016/j.jece.2020.104483
    [11]
    WANG R, KONG X Y, ZHANG W T, et al. Mechanism insight into rapid photocatalytic disinfection of salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures[J]. Applied Catalysis B—Environmental, 2018, 225: 228-237.
    [12]
    YANG Y, BIAN Z. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen[J]. Science of the Total Environment, 2020, 753: 141908-141919.
    [13]
    ZHAO L, YANG D, MA L L, et al. An efficient heteroge-neous catalyst of FeCo2O4/g-C3N4 composite for catalytic peroxymonosulfate oxidation of organic pollutants under visible light[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125725-125733.
    [14]
    ZHANG Y. The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4[J]. Chemical Engineering Journal,2014,245:117-123. doi: 10.1016/j.cej.2014.02.028
    [15]
    ZHAO C R, CHENG Y J, LI C H, et al. One step and fast preparation of VOx/g-C3N4 photocatalyst via microwave heating for effective degradation of RhB under visible light[J]. Journal of Physics and Chemistry of Solids, 2020, 136: 109122-109131.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (969) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return