Volume 39 Issue 5
Mar.  2022
Turn off MathJax
Article Contents
HOU Xiangchi, ZHOU Chuan, ZHOU Yujing, et al. Interlaminar properties and micro morphology of reduced graphene oxide modified carbon fiber/polyphenylene sulfide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2133-2140. doi: 10.13801/j.cnki.fhclxb.20210812.001
Citation: HOU Xiangchi, ZHOU Chuan, ZHOU Yujing, et al. Interlaminar properties and micro morphology of reduced graphene oxide modified carbon fiber/polyphenylene sulfide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2133-2140. doi: 10.13801/j.cnki.fhclxb.20210812.001

Interlaminar properties and micro morphology of reduced graphene oxide modified carbon fiber/polyphenylene sulfide composites

doi: 10.13801/j.cnki.fhclxb.20210812.001
  • Received Date: 2021-04-21
  • Accepted Date: 2021-07-25
  • Rev Recd Date: 2021-06-23
  • Available Online: 2021-08-12
  • Publish Date: 2022-03-23
  • Reduced graphene oxide(RGO) modified carbon fiber/polyphenylene sulfide composites (RGO-CF/PPS) were prepared by powder lamination methodand hot pressing process. Interlaminar shear properties and micromorphology of the RGO-CF/PPS composites at room temperature and hygrothermal environment were investi-gated. Meanwhile, the effect of RGO on the interface performance of the composites was analyzed. Results show that the interlaminar shear strength (ILSS) of the 0.1%RGO-CF/PPS composites in the dry state at room tempera-ture is 18.4% higher than that of the CF/PPS composites. After hygrothermal treatment, the ILSS of the RGO-CF/PPS composites are decreased and the ILSS strength retention rate of the RGO-CF/PPS composites is lower than that of the CF/PPS composites. Dynamic thermomechanical behavior results of the composites show that the RGO is helpful to enhance the interface bonding performance of the RGO-CF/PPS composites. Micromorphology shows that the RGO effectively improves the ILSS of the RGO-CF/PPS composites in the dry state at room temperature.

     

  • loading
  • [1]
    NAM J D, KIM J, LEE S, et al. Morphology and thermal properties of PPS/ABS blend systems[J]. Journal of Applied Polymer Science,2003,87(4):661-665. doi: 10.1002/app.11401
    [2]
    XU R, LIU H, SHI W. Photofluorescence of hyperbranched poly(phenylene sulfide)[J]. Journal of Polymer Science, Part B (Polymer Physics),2006,44(5):826-831. doi: 10.1002/polb.20744
    [3]
    刘保英, 王孝军, 杨杰, 等. 碳纤维表面改性研究进展[J]. 化学研究, 2015(2):5-14.

    LIU B Y, WANG X J, YANG J, et al. Research progress of carbon fiber surface modification[J]. Chemical Research,2015(2):5-14(in Chinese).
    [4]
    LI F, LIU Y, QU C B, et al. Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone compo-sites by graphene oxide coating[J]. Polymer,2015,59:155-165. doi: 10.1016/j.polymer.2014.12.067
    [5]
    XU J, XU D, WANG X, et al. Improved interfacial shear strength of carbon fiber/polyphenylene sulfide compo-sites by graphene[J]. High Performance Polymers,2017,29(8):913-921. doi: 10.1177/0954008316664398
    [6]
    ZHANG X, FAN X, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces,2012,4(3):1543-1552.
    [7]
    LI Y, PENG Q, HE X, et al. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers[J]. Journal of Materials Chemistry,2012,22:18748-18752. doi: 10.1039/c2jm32596a
    [8]
    LEE W, LEE J U, CHA H J, et al. Partially reduced graphene oxide as a multi-functional sizing agent for carbon fiber composites by electrophoretic deposition[J]. RSC Advances,2013,3(48):25609-25613. doi: 10.1039/c3ra44155e
    [9]
    MA Y, JIN S, UEDA M, et al. Higher performance carbon fiber reinforced thermoplastic composites from thermoplastic prepreg technique: Heat and moisture effect[J]. Composites Part B: Engineering,2018,154:90-98. doi: 10.1016/j.compositesb.2018.07.060
    [10]
    孙丽, 黄远, 万怡灶, 等. 碳/环氧树脂复合材料吸湿水分浓度场的有限元分析[J]. 兵器材料科学与工程, 2007, 30(4): 5-8.

    SUN L, HUANG Y, WAN Y Z, et al. Finite element analysis of moisture concentration field of carbon/epoxy resin composite material[J]. Ordnance Material Science and Engi-neering, 2007, 30(4): 5-8(in Chinese).
    [11]
    EFTEKHARI M, FATEMI A. Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects[J]. Polymer Testing,2016,51:151-164. doi: 10.1016/j.polymertesting.2016.03.011
    [12]
    HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. American Chemical Society,1958,208:1334-1339.
    [13]
    中国标准化管理委员会. 聚合物基复合材料短梁剪切强度试验方法: GB/T 30969—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Test method for short-beam shear strength of polymer matrix composite materials: GB/T 30969—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [14]
    American Society for Testing and Materials. Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): ASTM D 7028—2007e1[S]. Philadelphia: American Society for Testing and Materials International, 2007.
    [15]
    陈祥宝. 聚合物基复合材料手册(精)[M]. 北京: 化学工业出版社, 2004: 132-134.

    CHEN X B. Handbook of polymer matrix composites[M]. Beijing: Chemical Industry Press, 2004: 132-134(in Chinese).
    [16]
    DREYER D R, PARK S, BIELAWSKI C W, et al. The che-mistry of graphene oxide[J]. Chemical Society Reviews,2009,39(1):228-240.
    [17]
    杨云雪. 氧化石墨的制备及其热剥离产物的性能研究[D]. 天津: 天津大学, 2013.

    YANG Y X. Study on the preparation of graphite oxide and its thermal exfoliation products[D]. Tianjin: Tianjin University, 2013(in Chinese).
    [18]
    NIU Y, ZHANG Q, LI Y, et al. Reduction, dispersity and electrical properties of graphene oxide sheets under low-temperature thermal treatments[J]. Journal of Materials Science: Materials in Electronics,2017,28(1):729-733. doi: 10.1007/s10854-016-5583-1
    [19]
    MCALLISTER M J, LI J L, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials,2007,19(18):4396-4404. doi: 10.1021/cm0630800
    [20]
    胡泽旭, 陈姿晔, 相恒学, 等. 石墨烯改性聚苯硫醚纤维光稳定性及其增强机制[J]. 纺织学报, 2017(11):6-13.

    HU Z X, CHEN Z Y, XIANG H X, et al. The light stability of graphene modified polyphenylene sulfide fiber and its enhancement mechanism[J]. Journal of Textile Research,2017(11):6-13(in Chinese).
    [21]
    SINGH D K, GIRI P K, IYER P K. Evidence for defect-enhanced photoluminescence quenching of fluorescein by carbon nanotubes[J]. The Journal of Physical Chemistry C,2011,115(49):24067-24072. doi: 10.1021/jp207392d
    [22]
    杨杰. 聚苯硫醚树脂及其应用[M]. 北京: 化学工业出版社, 2006: 106-123.

    YANG J. Polyphenylene sulfide resin and its application[M]. Beijing: Chemical Industry Press, 2006: 106-123(in Chinese).
    [23]
    巩天琛. 湿热环境对CFRP层板性能影响及机理研究[D]. 天津: 中国民航大学, 2017.

    GONG T C. Influence of hygrothermal environments on properties and mechanism of CFRP laminates[D]. Tianjin: Civil Aviation University of China, 2017(in Chinese).
    [24]
    齐肖. 碳纤维复合材料耐湿热性能的多尺度模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    QI X. Multi-scale simulation study on the heat and humidity resistance of carbon fiber composites[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [25]
    PAPLHAM W P, BROWN R A, SALIN I M, et al. Absorption of water in polyimide resins and composites[J]. Journal of Applied Polymer Science,1995,57(2):133-137. doi: 10.1002/app.1995.070570202
    [26]
    过梅丽. 高聚物与复合材料的动态力学热分析[M]. 北京: 化学工业出版社, 2002: 29-60.

    GUO M L. Dynamic mechanical thermal analysis of polymer and composite materials[M]. Beijing: Chemical Industry Press, 2002: 29-60(in Chinese).
    [27]
    何国仁, 曾汉民, 杨桂成. 混杂短纤维增强聚苯硫醚复合材料的老化研究Ⅰ:破坏行为研究[J]. 复合材料学报, 1991(3):29-36.

    HE G R, ZENG H M, YANG G C. Study on aging of hybrid short fiber reinforced polyphenylene sulfide composites Ⅰ:Study on failure behavior[J]. Journal of Composite Materials,1991(3):29-36(in Chinese).
    [28]
    何国仁, 曾汉民, 杨桂成. 混杂短纤维增强聚苯硫醚的老化研究—Ⅱ:滑动摩擦磨损行为[J]. 塑料工业, 1992(1):35-38.

    HE G R, ZENG H M, YANG G C. Study on Aging of hybrid short fiber reinforced polyphenylene sulfide—Ⅱ:Sliding friction and wear behavior[J]. Plastics Industry,1992(1):35-38(in Chinese).
    [29]
    BRADY D G. The crystallinity of poly(phenylene sulfide) and its effect on polymer properties[J]. Journal of Applied Polymer Science,1976,20(9):2541-2551. doi: 10.1002/app.1976.070200921
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (935) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return