Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
BAO Yidong, HE Rui, SONG Yunhe, et al. One-step spreading for 2D woven carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3144-3155. doi: 10.13801/j.cnki.fhclxb.20210820.003
Citation: BAO Yidong, HE Rui, SONG Yunhe, et al. One-step spreading for 2D woven carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3144-3155. doi: 10.13801/j.cnki.fhclxb.20210820.003

One-step spreading for 2D woven carbon fiber reinforced plastics

doi: 10.13801/j.cnki.fhclxb.20210820.003
  • Received Date: 2021-06-15
  • Accepted Date: 2021-08-06
  • Rev Recd Date: 2021-07-27
  • Available Online: 2021-08-20
  • Publish Date: 2022-07-30
  • Draping for 2D woven carbon fiber reinforced plastics (CFRPs) influences the quality of final composite parts directly and significantly. The problems of laying reinforced carbon fibers in the manufacturing of 2D woven CFRPs were studied. A material coordinate system, a global coordinate system and a body coordinate system were built. A non-orthogonal constitutive model according to coordinate transformation relation was proposed based on continuum theory. Mechanical properties of 2D woven CFRPs were tested by uni-axial tensile tests for measuring the tensile properties and picture-frame tests for measuring the shear properties. A one-step plies spreading algorithm for 2D woven CFRPs was developed and an independent one-step plies spreading solver was developed. A cover part was spread. The result shows great consistency that the maximum error is only 5.0 mm which is a 1.9% margin of error. The carbon fiber shear angle distributions by calculation are consistent with experimental results and the maximum error is only 4°. The one-step spreading algorithm of 2D woven CFRPs was verified by calculations and experiments.

     

  • loading
  • [1]
    MULAY S S, UDHAYARAMAN R. On the constitutive modelling and damage behaviour of plain woven textile composite[J]. International Journal of Solids and Structures,2018,156-157:73-86.
    [2]
    DIXIT A, MALI H S. Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: A review[J]. Mechanics of Composite Materials,2013,49(1):1-20.
    [3]
    PENG X Q, GUO Z Y, DU T L, YU W R. A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation[J]. Composites Part B,2013,52:275-281.
    [4]
    ZHOU X Y, RUAN X, ZHANG S J, et al. Design optimization for thermal conductivity of plain-woven textile compo-sites[J]. Composite Structures,2021,255:112830.
    [5]
    Technavio. New report on global carbon fiber prepreg market[J]. Reinforced Plastics, 2016, 60(4): 193-194.
    [6]
    ERCAN S, MALEK B, SIDI B. The bearing strength of pin loaded woven composites manufactured by vacuum assisted resin transfer moulding and hand lay-up techniques[J]. Polymers and Polymer Composites,2012,20(3):153-158.
    [7]
    ZHANG Q, GAO Q, CAI J. Experimental and simulation research on thermal stamping of carbon fiber composite sheet[J]. Transactions of Nonferrous Metals Society of China,2014,24(1):217-223.
    [8]
    GONG Y K, SONG Z R, NING H M, et al. A comprehensive review of characterization and simulation methods for thermo-stamping of 2D woven fabric reinforced thermoplastics[J]. Composites Part B: Engineering,2020,203:108462.
    [9]
    RAMEZANKHANI M, CRAWFORD B, NARAYAN A, et al. Making costly manufacturing smart with transfer learning under limited data: A case study on composites autoclave processing[J]. Journal of Manufacturing Systems,2021,59:345-354.
    [10]
    KHAN L A, MEHOOD A H. Cost-effective composites manu-facturing processes for automotive applications[M]//Lightweight Composite Structures in Transport. Cambridge: Woodhead Publishing, 2016: 93-119.
    [11]
    陈中革, 吴建军, 邓良才, 等. 复合材料的铺层展开技术研究[J]. 工具技术, 2014, 48(2):27-30. doi: 10.3969/j.issn.1000-7008.2014.02.007

    CHEN Zhongge, WU Jianjun, DENG Liangcai, et al. Overlay spread technol-ogy research of composite material[J]. Tool Engineering,2014,48(2):27-30(in Chinese). doi: 10.3969/j.issn.1000-7008.2014.02.007
    [12]
    ROBERTSON R E, HSIUE E S, YEH G S Y. Continuous fiber rearrangements during the molding of fiber composites II:Flat cloth to a rounded cone[J]. Polymer Composites,1984,5(3):191-197.
    [13]
    WANG J, PATON R, PAGE J R. The draping of woven fabric preforms and prepregs for production of polymer compo-site components[J]. Composites Part A: Applied Science & Manufacturing,1999,30(6):757-765.
    [14]
    ANTHONY K P, GAVIN C, PATRICK D L. Simplified and advanced simulation methods for prediction of fabric draping[J]. Revue Européenne des Éléments Finis,2005,14:677-691.
    [15]
    蔡闻峰, 薛小平, 邓良才. 复合材料曲面铺层的数字化展开技术及发展方向[J]. 航空制造技术, 2012(3):48-51. doi: 10.3969/j.issn.1671-833X.2012.03.006

    CAI Wenfeng, XUE Xiaoping, DENG Liangcai. Digital curved surface flattening technonogy of composites and its development trend[J]. Aeronautical Manufacturing Technology,2012(3):48-51(in Chinese). doi: 10.3969/j.issn.1671-833X.2012.03.006
    [16]
    周晔欣, 戴如玥, 黄争鸣. 复合材料结构力学分析CAE软件现状[J]. 应用力学学报, 2020, 37(1):114-122, 475-476.

    ZHOU Yexin, DAI Ruyue, HUANG Zhengming. Present situation of CAE software for structural mechanics analysis of composite materials[J]. Chinese Journal of Applied Mechanics,2020,37(1):114-122, 475-476(in Chinese).
    [17]
    富威, 王鹏, 李庆芬. 基于Web的复合材料设计专家系统[J]. 哈尔滨工程大学学报, 2004, 25(6):773-776. doi: 10.3969/j.issn.1006-7043.2004.06.019

    FU Wei, WANG Peng, LI Qingfen. Study on expert system in composite material design based on the Web[J]. Journal of Harbin Engineering University,2004,25(6):773-776(in Chinese). doi: 10.3969/j.issn.1006-7043.2004.06.019
    [18]
    王涛. 复合材料构件纤维铺覆仿真及特征建模技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.

    WANG Tao. Research on fiber draping and feature modeling of composite material[D]. Harbin: Harbin Engineering University, 2011(in Chinese).
    [19]
    黄小双, 姚远, 彭雄奇, 等. 考虑双拉耦合的复合材料编织物各向异性超弹性本构模型[J]. 复合材料学报, 2016, 33(10):2319-2324.

    HUANG Xiaoshuang, YAO Yuan, PENG Xiongqi, et al. Anisotropic hyperelastic constitutive model with biaxial tension coupling for woven fabric composite[J]. Acta Materiae Compositae Sinica,2016,33(10):2319-2324(in Chinese).
    [20]
    胡虹玲, 龚友坤, 彭雄奇, 等. 考虑拉剪耦合的二维编织物各向异性超弹性本构模型[J]. 复合材料学报, 2017, 34(6):1388-1393.

    HU Hongling, GONG Youkun, PENG Xiongqi, et al. An anisotropic hyperelastic constitutive model considering shear-tension coupling for 2-dimensional woven fabrics[J]. Acta Materiae Compositae Sinica,2017,34(6):1388-1393(in Chinese).
    [21]
    张衡, 严飙, 龚友坤, 等. 碳纤维机织物增强热塑性树脂复合材料热冲压叠层模型[J]. 复合材料学报, 2017, 34(12):2741-2746.

    ZHANG Heng, YAN Biao, GONG Youkun, et al. A lamination model for thermostamping of carbon woven fabric reinforced thermoplastic resin composites[J]. Acta Materiae Compositae Sinica,2017,34(12):2741-2746(in Chinese).
    [22]
    张必超, 彭雄奇, 黄小双. 考虑双拉耦合的复合材料编织物非正交本构模型[J]. 应用数学和力学, 2016, 37(3):227-234.

    ZHANG Bichao, PENG Xiongqi, HUANG Xiaoshuang. A non-orthogonal constitutive model of composite woven fabric considering shear-tension coupling[J]. Applied Mathematics and Mechanics,2016,37(3):227-234(in Chinese).
    [23]
    BIAO L, ZHANG W Z, FENNER J S, et al. Multi-scale modeling of mechanical behavior of cured woven textile compo-sites accounting for the influence of yarn angle variation[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105460.
    [24]
    ZHANG W Z, BOSTANABAD L, BIAO L, et al. A numerical Bayesian-calibrated characterization method for multiscale prepreg preforming simulations with tension-shear coupling[J]. Composites Science and Technology,2019,170:15-24.
    [25]
    GUO Y Q, BATOZ J L, DETRAUX J M, et al. Finite element procedures for strain estimations of sheet metal forming parts[J]. International Journal for Numerical Methods in Engineering,1990,30(8):1385-1401. doi: 10.1002/nme.1620300804
    [26]
    NGUYEN B N, JOHNSON K I, KHALEEL M A. Analysis of tube free hydroforming using an inverse approach with FLD- based adjustment of process parameters[J]. Journal of Engineering Materials and Technology,2003,125(2):133-140. doi: 10.1115/1.1555651
    [27]
    ZENG D, ZHU X H, ZHANG L, et al. Development of a one-step analysis for preforming of woven carbon fiber compo-sites[C]. 15th International Ls-dyna Users Conference, Detroit, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (1198) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return