Volume 40 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
LI Chenyang, LI Shuxin, JI Yundong, et al. Effect of polysiloxane modified epoxy on high temperature residual strength of glass fiber/phenolic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6619-6629. doi: 10.13801/j.cnki.fhclxb.20230301.001
Citation: LI Chenyang, LI Shuxin, JI Yundong, et al. Effect of polysiloxane modified epoxy on high temperature residual strength of glass fiber/phenolic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6619-6629. doi: 10.13801/j.cnki.fhclxb.20230301.001

Effect of polysiloxane modified epoxy on high temperature residual strength of glass fiber/phenolic composites

doi: 10.13801/j.cnki.fhclxb.20230301.001
Funds:  National Natural Science Foundation of China (52273080); Open Fund for Advanced Energy Science and Technology Guangdong Provincial Laboratory Foshan Branch (Foshan Xianhu Laboratory)(XHT2020-002); Special Funds for Basic Scientific Research Business Expenses of Central Universities (WUT2021IVA068; 2020Ⅲ028GX; 2021III015JC)
  • Received Date: 2022-12-30
  • Accepted Date: 2023-02-25
  • Rev Recd Date: 2023-02-24
  • Available Online: 2023-03-01
  • Publish Date: 2023-12-01
  • The ASTM 3059-18 standard incorporated high temperature residual mechanical properties into the flame retardant index of resin matrix composites, which broke through the traditional chemical flame retardant concept of composites, and marked that the concept of structural flame-retardant has been valued by the designer. In this work, the self-made polysiloxane modified epoxy resin (EP-Si) was blended with phenolic resin (PF), supplemented with inorganic powder and glass fiber reinforcement. The effects of polysiloxane modified epoxy resin and inorganic powder on the high temperature residual strength of glass fiber/phenolic composites were studied by means of mechanical properties, thermogravimetric analysis (TGA), cone calorimeter (CCT) and scanning electron microscope (SEM). The experimental results show that when the amount of EP-Si is 40wt%, the flexural strength and high temperature residual flexural strength of the composite is 384.4 MPa and 53.3 MPa, respectively, which is 78.7% and 85.1% higher than PF composite. With appropriate proportion of inorganic powder, the maximum residual flexural strength can reach 85.1 MPa, which is 195.5% higher than PF composite. After heat-treated, PF composite containing silicon expands along thickness, while PF composite shrinks along thickness. The pyrolysis residual rate of the PF composite containing silicon is higher and oxidative degradation of the surface layer is faster, but the content of CO generated in the inner layer is lower than that of PF composite. The inorganic pyrolysis product of resin matrix containing silicon protects inner layer resin and fibers. The distribution of the in-situ pyrolysis inorganic product is more uniform, the good compatibility with inorganic powder and possible co-sintering effect further isolates the oxygen intrusion, improves structural integrity and high temperature residual strength.

     

  • loading
  • [1]
    杨晓光, 贾旭宏, 徐松涛, 等. 酚醛树脂/玻璃纤维型飞机货舱衬板复合材料火灾危险性评价[J]. 消防科学与技术, 2022, 41(3):367-370. doi: 10.3969/j.issn.1009-0029.2022.03.018

    YANG Xiaoguang, JIA Xuhong, XU Songtao, et al. Fire hazard evaluation of phenolic resin/glass fiber aircraft cargo lining composite material[J]. Fire Science and Technology,2022,41(3):367-370(in Chinese). doi: 10.3969/j.issn.1009-0029.2022.03.018
    [2]
    REN X W, ZHU Y P, WANG F, et al. Flame-retardant properties of polyester fabrics reinforced phenolic resin modified with silazanes composites[J]. Advanced Materials Research,2015,1120-1121(1):519-522.
    [3]
    AVILA M B, DEMBSEY N A, DORE C. Effect of resin type and glass content on the reaction to fire characteristics of typical FRP composites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(9): 1503-1511.
    [4]
    ASTM Committee. Standard spec-ification for fiber-reinforced polymer (FRP) gratings used in marine construction and shipbuilding: ASTM F3059-18[S]. West Conshehoken: ASTM, 2018.
    [5]
    华幼卿, 金日光. 高分子物理[M]. 北京: 化学工业出版社, 2013.

    HUA Youqing, JIN Riguang. Polymer physics[M]. Beijing: Chemical Industry Press, 2013(in Chinese).
    [6]
    ZHANG X P, ZHANG L X, ZHANG D X, et al. Mechanism of the temperature-responsive material regulating porous morphology on epoxy phenolic novolac resin microcapsule surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,593:124581.
    [7]
    KNOP A, PILATO L A. Phenolic resins: Chemistry, applications and performance[M]. Berlin: Springer Science & Business Media, 2013: 139-147.
    [8]
    严侃, 黄朋. 复合材料在海洋工程中的应用[J]. 玻璃钢/复合材料, 2017(12):99-104. doi: 10.3969/j.issn.1003-0999.2017.12.018

    YAN Kan, HUANG Peng. Application of composite materials in marine engineering[J]. Fiber Reinforced Plastics/Composites,2017(12):99-104(in Chinese). doi: 10.3969/j.issn.1003-0999.2017.12.018
    [9]
    SUTHERLAND L S. A review of impact testing on marine composite materials: Part I-Marine impacts on marine composites[J]. Composite Structures,2018,188:197-208. doi: 10.1016/j.compstruct.2017.12.073
    [10]
    石锦坤, 刘辉, 张西伟, 等. 复合材料水下防护结构在海洋油气开发的应用[J]. 复合材料科学与工程, 2021(12):78-81,128. doi: 10.19936/j.cnki.2096-8000.20211228.012

    SHI Jinkun, LIU Hui, ZHANG Xiwei, et al. Application of composite materials protector in the subsea of offshore oil[J]. Composites Science and Engineering,2021(12):78-81,128(in Chinese). doi: 10.19936/j.cnki.2096-8000.20211228.012
    [11]
    GU P, ASARO R J. Structural buckling of polymer matrix composites due to reduced stiffness from fire damage[J]. Composite Structures,2005,69(1):65-75.
    [12]
    MOURITZ A P, MATHYS Z. Post-fire mechanical properties of marine polymer composites[J]. Composite Structures,1999,47(1):643-653.
    [13]
    GARDINER C P, MATHYS Z, MOURITZ A P. Post-fire structural properties of burnt GRP plates[J]. Marine Structures,2004,17(1):53-73. doi: 10.1016/j.marstruc.2004.03.003
    [14]
    SHI S B, LIANG J, GU L X, et al. Degradation in compres-sive strength of silica/phenolic composites subjected to thermal and mechanical loading[J]. Journal of Reinforced Plastics and Composites,2016,35(7):579-588. doi: 10.1177/0731684415624769
    [15]
    GIBSON A G, HUMPHREY J K, DI-MODICA P, et al. Post-fire integrity of composite gratings for offshore platforms[J]. Journal of Reinforced Plastics and Compo-sites,2014,33(6):543-555. doi: 10.1177/0731684413495933
    [16]
    MOURITZ A P, MATHYS Z. Mechanical properties of fire-damaged glass-reinforced phenolic composites[J]. Fire and Materials,2000,24(2):67-75. doi: 10.1002/1099-1018(200003/04)24:2<67::AID-FAM720>3.0.CO;2-0
    [17]
    RALLINI M, TORRE L, KENNY J M, et al. Effect of boron carbide nanoparticles on the thermal stability of carbon/phenolic composites[J]. Polymer Composites,2017,38(9):1819-1827. doi: 10.1002/pc.23752
    [18]
    RALLINI M, WU H, NATALI M, et al. Nanostructured phenolic matrices: Effect of different nanofillers on the thermal degradation properties and reaction to fire of a resol[J]. Fire and Materials,2017,41(7):817-825. doi: 10.1002/fam.2425
    [19]
    NAJAFABADIE P, KHANEGHAHI M H, AMIRI H A, et al. Experimental investigation and probabilistic models for residual mechanical properties of GFRP pultruded profiles exposed to elevated temperatures[J]. Composite Structures,2019,211:610-629. doi: 10.1016/j.compstruct.2018.12.032
    [20]
    KATSOULIS C, KANDOLA B K, MYLER P, et al. Post-fire flexural performance of epoxy-nanocomposite matrix glass fibre composites containing conventional flame retardants[J]. Composites Part A: Applied Science and Manufacturing,2012,43(8):1389-1399.
    [21]
    DING J, HUANG Z, LUO H, et al. Preparation and thermal stability of boron-containing phenolic resin/microcrystalline muscovite composites[J]. Materials Research Innovations,2015,19(S8):440-444.
    [22]
    刘强, 赵玉, 张兴刚, 等. 船舶与海洋工程用高耐火复合材料格栅研究[J]. 材料开发与应用, 2022, 37(3):45-51.

    LIU Qiang, ZHAO Yu, ZHANG Xinggang, et al. Development of high fire resistant composites grating for ship and ocean engineering[J]. Development and Application of Materials,2022,37(3):45-51(in Chinese).
    [23]
    徐博, 丁杰, 王兵, 等. AlB2对高硅氧纤维/可瓷化酚醛树脂复合材料及其裂解产物力学性能的影响[J]. 复合材料学报, 2021, 38(1):129-136.

    XU Bo, DING Jie, WANG Bing, et al. Effects of AlB2 on mechanical properties of high silica fiber/ceramicizable phenolic resin composites and their pyrolysis products[J]. Acta Materiae Compositae Sinica,2021,38(1):129-136(in Chinese).
    [24]
    李志强, 江艳艳, 冀运东, 等. 聚硅氧烷改性环氧树脂及其热解残留物研究[J]. 热固性树脂, 2022, 37(4):1-8. doi: 10.13650/j.cnki.rgxsz.2022.04.006

    LI Zhiqiang, JIANG Yanyan, JI Yundong, et al. Study on polysiloxane modified epoxy resin and its pyrolysis residue[J]. Thermosetting Resin,2022,37(4):1-8(in Chinese). doi: 10.13650/j.cnki.rgxsz.2022.04.006
    [25]
    文钦, 刘博伟, 冀运东. 端羟基聚二甲基硅氧烷改性环氧树脂研究[J]. 热固性树脂, 2020, 35(1):25-28. doi: 10.13650/j.cnki.rgxsz.2020.01.005

    WEN Qin, LIU Bowei, JI Yundong. Study on the hydroxylterminated polydimethylsiloxane modified epoxy resins[J]. Thermosetting Resin,2020,35(1):25-28(in Chinese). doi: 10.13650/j.cnki.rgxsz.2020.01.005
    [26]
    冀运东, 江艳艳, 曹东风, 等. 聚硅氧烷改性环氧/酚醛共混物热氧降解残留物的结构及组分演变[J]. 高分子材料科学与工程, 2022, 38(10):90-97.

    JI Yundong, JIANG Yanyan, CAO Dongfeng, et al. Structure and composition evolution of polysiloxane modified epoxy/phenolic blends under the condition of hot oxygen[J]. Polymer Materials Science and Engineering,2022,38(10):90-97(in Chinese).
    [27]
    中国国家标准化管理委员会. 玻璃纤维增强塑料树脂含量试验方法: GB/T 2577—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for resin content of glass fiber reinforced plastics: GB/T 2577—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [28]
    中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [29]
    International Organization for Standarization. Reaction-to-fire tests-Heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement) ISO 5660-1: 2015[S]. Geneva: International Organization for Standarization, 2015.
    [30]
    PENG Y L, ZENG L. Study on the phenolic-epoxy resin system[J]. Advanced Materials Research,2015,1088:439-443. doi: 10.4028/www.scientific.net/AMR.1088.439
    [31]
    VORONKOV M G, YUZHELEVSKII Y A, MILESHKEVICH V P. The siloxane bond and its influence on the structure and physical properties of organosilicon compounds[J]. Russian Chemical Reviews,1975,44(4):355-372. doi: 10.1070/RC1975v044n04ABEH002273
    [32]
    NATALI M, KENNY J M, TORRE L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review[J]. Progress in Materials Science,2016,84:192-275. doi: 10.1016/j.pmatsci.2016.08.003
    [33]
    LI S, HAN Y, CHEN F H, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability,2016,124:68-76. doi: 10.1016/j.polymdegradstab.2015.12.010
    [34]
    TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon,1995,33(11):1509-1515. doi: 10.1016/0008-6223(95)00092-R
    [35]
    QIAN X D, SONG L, HU Y, et al. Thermal degradation and flammability of novel organic/inorganic epoxy hybrids containing organophosphorus-modified oligosiloxane[J]. Thermochimica Acta,2013,552:87-97. doi: 10.1016/j.tca.2012.11.010
    [36]
    JIA P, LIU H C, LIU Q, et al. Thermal degradation mechanism and flame retardancy of MQ silicone/epoxy resin composites[J]. Polymer Degradation and Stability,2016,134:144-150. doi: 10.1016/j.polymdegradstab.2016.09.029
    [37]
    MCKEON T. Ablative degradation of a silicone foam[J]. Journal of Macromolecular Science: Part A-Chemistry,1969,3(4):585-612. doi: 10.1080/10601326908053831
    [38]
    WU C S, LIU Y L, CHIU Y S. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents[J]. Polymer,2002,43(15):4277-4284. doi: 10.1016/S0032-3861(02)00234-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (493) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return