Volume 40 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
WANG Yun, HU Shaoheng, DENG A'shen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350-5358. doi: 10.13801/j.cnki.fhclxb.20230104.003
Citation: WANG Yun, HU Shaoheng, DENG A'shen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350-5358. doi: 10.13801/j.cnki.fhclxb.20230104.003

Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance

doi: 10.13801/j.cnki.fhclxb.20230104.003
Funds:  National Natural Science Foundation of China (31530009); Hunan Provincial Natural Science Foundation of China (2021 JJ30042); Scientific Research Fund of Hunan Provincial Education Department (20 A508)
  • Received Date: 2022-10-14
  • Accepted Date: 2022-12-02
  • Rev Recd Date: 2022-11-29
  • Available Online: 2023-01-04
  • Publish Date: 2023-09-15
  • Three-dimensional (3D) electrode materials are ideal candidates for use in fabricating high-performance supercapacitors, owing to their unique network structure and excellent electrochemical properties. Although cellulose nanofibers (CNF) and multiwall carbon nanotubes (MWCNT) are widely used in the development and design of electrode materials, how to use their unique one-dimensional nanostructures and inherent physical properties to build high-performance 3D electrode materials remains a huge challenge. Herein, an aerogel film produced by the freeze-drying self-aggregation of MWCNTs and CNFs was used as the “filling,” and an inter-connected 3D network of nickel foam (NF) as the “framework,” for well-design and fabrication of an MWCNT/CNF-NF hybrid materials. Benefiting from the excellent conductivity and high specific surface area of the MWCNT/CNF-NF, it is exceptionally suitable for use as the electroactive material platform in the fabrication of high-performance electrodes. Therefore, in this work, the high-performance polypyrrole (PPy)-MWCNT/CNF-NF freestanding electrodes were successfully prepared by optimizing the time of the electroactive material polypyrrole. As expected, the electrode exhibits a high areal capacity of 2217.8 mF·cm−2 (869.9 F·g−1) at a current density of 5 mA·cm−2, with good stability even after 3000 charge-discharge cycles.

     

  • loading
  • [1]
    HE J Q, LU C H, JIANG H B. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature,2021,597:57-63. doi: 10.1038/s41586-021-03772-0
    [2]
    WANG X N, ZHOU Z Y, SUN Z J, et al. Atomic modulation of 3D conductive frameworks boost performance of MnO2 for coaxial fiber-shaped supercapacitor[J]. Nano-Micro Letters,2021,13(1):4-12. doi: 10.1007/s40820-020-00529-8
    [3]
    LV J, JEERAPAN I, TEHRANI F, et al. Sweat-based wearable energy harvesting-storage hybrid textile devices[J]. Energy Environment Science,2018,11:3431-3442. doi: 10.1039/C8EE02792G
    [4]
    张文枭, 左杏薇, 曲丽君, 等. 基于导电纤维的柔性电子器件研究进展[J]. 复合材料学报, 2022, 40(2):688-709.

    ZHANG W X, ZUO X W, QU L J, et al. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica,2022,40(2):688-709(in Chinese).
    [5]
    聂文琪, 孙江东, 许帅, 等. 纺织基超级电容器研究进展[J]. 复合材料学报, 2022, 39(3):981-992.

    NIE W Q, SUN J D, XU S, et al. Textile-based for supercapacitors: A review[J]. Acta Materiae Compositae Sinica,2022,39(3):981-992(in Chinese).
    [6]
    BALAMURUGAN J, NGUYEN T T, ARAVINDAN V, et al. Flexible solid-state asymmetric supercapacitors based on nitrogen-doped graphene encapsulated ternary metal-nitrides with ultralong cycle life[J]. Advanced Functional Materials,2018,28(44):1804663. doi: 10.1002/adfm.201804663
    [7]
    刘馨月, 齐晓俊, 管宇鹏, 等. 纤维素纳米纤丝-还原氧化石墨烯/聚苯胺气凝胶柔性电极复合材料的制备与性能[J]. 复合材料学报, 2019, 36(7):1583-1590.

    LIU X Y, QI X J, GUAN Y P, et al. Preparation and properties of cellulose nanofiber-reduced graphene oxide/polyaniline composite aerogels as flexible electrodes[J]. Acta Materiae Compositae Sinica,2019,36(7):1583-1590(in Chinese).
    [8]
    赵文誉, 王振祥, 郑玉婴, 等. NiS2/三维多孔石墨烯复合材料作为超级电容器电极材料的电化学性能[J]. 复合材料学报, 2020, 37(2):422-431.

    ZHAO W Y, WANG Z X, ZHENG Y Y, et al. Electrochemical performance of NiS2/3D porous reduce graphene oxide composite as electrode material for supercapacitors[J]. Acta Materiae Compositae Sinica,2020,37(2):422-431(in Chinese).
    [9]
    DUBAL D P, CHODANKAR N R, KIM D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews,2018,47(6):2065-2129. doi: 10.1039/C7CS00505A
    [10]
    韩景泉, 王思伟, 岳一莹, 等. 静电纺定向纳米纤维素-碳纳米管/聚乙烯醇复合纤维导电膜及性能[J]. 复合材料学报, 2018, 35(9):2351-2361.

    HAN J Q, WANG S W, YUE Y Y, et al. Preparation and characterization of cellulose nanocrystal-carbon nanotube/polyvinyl alcohol composite conductive membranes with oriented fibers by electrospinning[J]. Acta Materiae Compositae Sinica,2018,35(9):2351-2361(in Chinese).
    [11]
    LI D L, GONG Y N, WANG M S, et al. Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes[J]. Nano-Micro Letters,2017,9(2):9-16.
    [12]
    董丽攀, 李政, 王福迎, 等. 细菌纤维素@聚吡咯-单壁碳纳米管导电膜的制备与表征[J]. 复合材料学报, 2019, 36(3):723-729.

    DONG L P, LI Z, WANG F Y, et al. Preparation and characterization of bacterial cellulose@polypyrrole-single wall carbon nanotube conductive films[J]. Acta Materiae Compositae Sinica,2019,36(3):723-729(in Chinese).
    [13]
    顾升, 王雪, 徐国祺. 基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料[J]. 复合材料学报, 2020, 37(9):2105-2116.

    GU S, WANG X, XU G Q. Construction of nanocellulose-carboxylated carbon nanotube-graphite/polypyrrole flexible electrode composite based on interface interaction[J]. Acta Materiae Compositae Sinica,2020,37(9):2105-2116(in Chinese).
    [14]
    XIA L Y, LI X L, WU Y Q, et al. Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors[J]. Chemical Engineering Journal,2020,379:122325-122334. doi: 10.1016/j.cej.2019.122325
    [15]
    CHEN W M, ZHANG D T, YANG K, et al. Mxene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors[J]. Chemical Engineering Journal,2021,413:127524. doi: 10.1016/j.cej.2020.127524
    [16]
    ZHANG X Q, HUANG L, QING Y, et al. Fabrication of robust, highly conductive, and elastic hybrid carbon foam platform for high-performance compressible asymmetry supercapacitors[J]. ACS Omega,2021,6:14230-14241. doi: 10.1021/acsomega.1c00952
    [17]
    ZHOU S Y, KONG X Y, ZHENG B, et al. Cellulose nanofiber@conductive metal-organic frameworks for high-performance flexible supercapacitors[J]. ACS Nano,2021,13(8):9578-9586.
    [18]
    LIU H Y, XU T, CAI C Y, et al. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor[J]. Advanced Functional Materials,2022,32(26):2113082. doi: 10.1002/adfm.202113082
    [19]
    TIAN W Q, VAHID M A, REID M S, et al. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose[J]. Advanced Materials,2019,41:1970290.
    [20]
    QING Y, SABO R, ZHU J Y, et al. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches[J]. Carbohydrate Polymers,2013,97:226-234. doi: 10.1016/j.carbpol.2013.04.086
    [21]
    ZHU M, HUANG Y, DENG Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced perfor-mance obtained by hybridizing polypyrrole chains with MXene[J]. Advanced Energy Materials,2016,6:1600969. doi: 10.1002/aenm.201600969
    [22]
    FARD L A, OJANI R, RAOOF J B, et al. PdCo porous nanostructures decorated on polypyrrole@MWCNTs conduc-tive nanocomposite-modified glassy carbon electrode as a powerful catalyst for ethanol electrooxidation[J]. Applied Surface Science, 2017, 401: 40-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (502) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return