Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
HAO Shuo, XIE Hao, LI Shuang, et al. Study on the preparation and properties of rice straw reinforced phenolic foam insulation material[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5630-5640. doi: 10.13801/j.cnki.fhclxb.20230110.001
Citation: HAO Shuo, XIE Hao, LI Shuang, et al. Study on the preparation and properties of rice straw reinforced phenolic foam insulation material[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5630-5640. doi: 10.13801/j.cnki.fhclxb.20230110.001

Study on the preparation and properties of rice straw reinforced phenolic foam insulation material

doi: 10.13801/j.cnki.fhclxb.20230110.001
Funds:  National Natural Science Foundation of China (32071704)
  • Received Date: 2022-11-09
  • Accepted Date: 2022-12-09
  • Rev Recd Date: 2022-12-08
  • Available Online: 2023-01-10
  • Publish Date: 2023-10-15
  • By compounding rice straw with phenolic resin (PF) foam, to improve the shortcomings of PF foam itself, such as high brittleness and poor mechanical strength, and to investigate the effects of length (8 cm, 12 cm and 16 cm) and form (cross-cutting straw, slope-cutting straw and grinding straw fiber) of rice straw on the physical properties, mechanical and combustion properties of the composite material. The results show that the inner and outer surfaces of rice straw have an obvious mechanical engagement with PF foam. The bending strength, compressive strength and tensile strength perpendicular to the board surface of rice straw/PF foam composites are better than PF foam. The bending strength of 16 cm long slope-cutting rice straw/PF foam composite reaches 1.18 MPa, which is 195% higher than PF foam. The compressive stress at 10% strain and tensile strength perpendicular to the plate surface of 16 cm long grinding rice straw/PF foam composite are 251.30 kPa and 121.26 kPa, respectively, which are 112.1% and 20.7% higher than PF foam. The vertical combustion and limited oxygen index (LOI) results show that PF foam has better wrapping effect on straw, the thermal stability of the composite is almost the same as that of PF foam, with almost no change in LOI value. The flammability test results of both rice straw/PF foam composites and PF foam meet the requirements of B1 class building materials, which show an excellent fire resistance. To sum up, 8 cm slope-cutting rice straw reinforced PF foam composite has an optimal integrated mechanical property.

     

  • loading
  • [1]
    NODEH-FARAHANI D, BENTLEY J N, CRILLEY L R, et al. A boron dipyrromethene (BODIPY) based probe for selective passive sampling of atmospheric nitrous acid (HONO) indoors[J]. Analyst,2021,146(18):5756-5766. doi: 10.1039/D1AN01089A
    [2]
    DESCHENES O. Temperature, human health, and adaptation: A review of the empirical literature[J]. Energy Economics,2014,46:606-619. doi: 10.1016/j.eneco.2013.10.013
    [3]
    AL-HOMOUD M S. Performance characteristics and practical applications of common building thermal insulation materials[J]. Building and Environment,2005,40(3):353-366. doi: 10.1016/j.buildenv.2004.05.013
    [4]
    LI S, CUI B, XIE H, et al. Strong cellulose-based light-management film with ultraviolet blocking and near-infrared shielding performance[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42522-42530.
    [5]
    HASSAN T, JAMSHAID H, MISHRA R, et al. Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste[J]. Polymers, 2020, 12(3): 654.
    [6]
    PILATO L. Phenolic resins: A century of progress[M]. Heidelberg: Springer, 2010: 190.
    [7]
    赵君行. 酚醛泡沫塑料在外墙保温中的应用研究[J]. 江西建材, 2021(1):121,123.

    ZHAO Junxing. Study on application of phenolic foam in external wall insulation[J]. Jiangxi Building Materials,2021(1):121,123(in Chinese).
    [8]
    葛铁军, 胡晓岐, 王东奇. 对苯二甲醇改性酚醛泡沫的性能研究[J]. 化工新型材料, 2020, 48(8):80-84, 90.

    GE Tiejun, HU Xiaoqi, WANG Dongqi. Study on property of p-phenylenediethanol modified phenolic foam[J]. New Chemical Materials,2020,48(8):80-84, 90(in Chinese).
    [9]
    TANG Q, FANG L, GUO W. Effects of bamboo fiber length and loading on mechanical, thermal and pulverization properties of phenolic foam composites[J]. Journal of Bioresources and Bioproducts,2019,4(1):51-59. doi: 10.21967/jbb.v4i1.184
    [10]
    ZHOU M, SHI H, LI C, et al. Depolymerization and activation of alkali lignin by solid acid-catalyzed phenolation for preparation of lignin-based phenolic foams[J]. Industrial & Engineering Chemistry Research,2020,59(32):14296-14305.
    [11]
    MOUGEL C, GARNIER T, CASSAGNAU P, et al. Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution[J]. Polymer,2019,164:86-117. doi: 10.1016/j.polymer.2018.12.050
    [12]
    XI Z, LI D, FENG Z. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion[J]. Fuel,2017,206:334-341. doi: 10.1016/j.fuel.2017.06.022
    [13]
    YU Y, WANG Y, XU P, et al. Preparation and characterization of phenolic foam modified with bio-oil[J]. Materials,2018,11(11):2228. doi: 10.3390/ma11112228
    [14]
    SARIKA P R, NANCARROW P, KHANSAHEB A, et al. Progress in bio-based phenolic foams: Synthesis, properties, and applications[J]. ChemBioEng Reviews,2021,8(6):612-632. doi: 10.1002/cben.202100017
    [15]
    DEL SAZ-OROZCO B, VIRGINIA ALONSO M, OLIET M, et al. Effects of formulation variables on density, compressive mechanical properties and morphology of wood flour-reinforced phenolic foams[J]. Composites Part B: Engineering,2014,56:546-552. doi: 10.1016/j.compositesb.2013.08.078
    [16]
    李玲, 许玉芝, 王春鹏, 等. 丁腈橡胶粉改性酚醛树脂泡沫的性能与微观结构研究[J]. 林产化学与工业, 2013, 33(2):31-36.

    LI Ling, XU Yuzhi, WANG Chunpeng, et al. Properties and microstructure of phenolic foam modified by nitrile butadiene rubber powder[J]. Chemistry and Industry of Forest Products,2013,33(2):31-36(in Chinese).
    [17]
    CHOE J, KIM M, KIM J, et al. A microwave foaming method for fabricating glass fiber reinforced phenolic foam[J]. Composite Structures,2016,152:239-246. doi: 10.1016/j.compstruct.2016.05.044
    [18]
    SHEN H B, NUTT S. Mechanical characterization of short fiber reinforced phenolic foam[J]. Composites Part A: Applied Science and Manufacturing,2003,34(9):899-906. doi: 10.1016/S1359-835X(03)00136-2
    [19]
    ISLAM M S, KOVALCIK A, HASAN M, et al. Natural fiber reinforced polymer composites[J]. International Journal of Polymer Science,2015,2015:813568. doi: 10.1155/2015/813568
    [20]
    曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3):1229-1247.

    CAO Jianlin, BAI Shulin, QIN Wenzhen, et al. Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica,2023,40(3):1229-1247(in Chinese).
    [21]
    ZHOU Y, TRABELSI A, EL MANKIBI M. A review on the properties of straw insulation for buildings[J]. Construction and Building Materials,2022,330:127215. doi: 10.1016/j.conbuildmat.2022.127215
    [22]
    魏俞涌, 钱少平, 姚文超, 等. 水稻秸秆不同部位剪切性能分析[J]. 农业工程, 2021, 11(8):103-107.

    WEI Yuyong, QIAN Shaoping, YAO Wenchao, et al. Experiment and analysis of shearing property of rice straw[J]. Agricultural Engineering,2021,11(8):103-107(in Chinese).
    [23]
    XIE H, CUI B, HAO S, et al. Exploring the macroscopic and microscopic characteristics of rice stalk for utilization in bio-composites[J]. Composites Science,2022,230:109728.
    [24]
    孙俊威, 蒋晶, 赵娜, 等. 原位成纤复合泡沫材料的研究进展[J]. 复合材料学报, 2023, 40(4):1951-1965.

    SUN Junwei, JIANG Jing, ZHAO Na, et al. Research progress of in-situ fibrous composite foamed material[J]. Acta Materiae Compositae Sinica,2023,40(4):1951-1965(in Chinese).
    [25]
    中国国家标准化管理委员会. 泡沫塑料及橡胶表观密度的测定: GB/T 6343—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Cellular plastics and rubbers—Determination of apparent density: GB/T 6343—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [26]
    中国国家标准化管理委员会. 绝热材料稳态热阻及有关特性的测定—防护热板法: GB/T 10294—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Thermal insulation—determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus: GB/T 10294—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27]
    中国国家标准化管理委员会. 硬质泡沫塑料弯曲性能的测定: GB/T 8812.1—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People's Republic of China. Rigid cellular plastics—Determination of flexural properties: GB/T 8812.1—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [28]
    中国国家标准化管理委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Rigid cellular plastics—Determination of compression properties: GB/T 8813—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [29]
    中国国家标准化管理委员会. 建筑用绝热制品垂直于表面抗拉强度的测定: GB/T 30804—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Thermal insulation products for building applications—Determination of tensile strength perpendicular to faces: GB/T 30804—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [30]
    中国国家标准化管理委员会. 硬质泡沫塑料燃烧性能实验方法—垂直燃烧法: GB/T 8333—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test method for flammability of rigid cellular plastic—Virtical burning method: GB/T 8333—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [31]
    中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为: GB/T 2406.2—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Plastics—Determination of burning behaviour by oxygen index: GB/T 2406.2—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [32]
    中国国家标准化管理委员会. 建筑材料可燃性试验方法: GB/T 8626—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People's Republic of China. Test method of flammability for building materials: GB/T 8626—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [33]
    孙妮娜, 董文军, 王晓燕, 等. 东北稻区水稻收获秸秆处理方式综合效果研究[J]. 农业机械学报, 2020, 51(4):69-77.

    SUN Nina, DONG Wenjun, WANG Xiaoyan, et al. Comprehensive effect of rice harvesting straw treatment methods in northeast rice region[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(4):69-77(in Chinese).
    [34]
    INGLESBY M K, GRAY G M, WOOD D F, et al. Surface characterization of untreated and solvent-extracted rice straw[J]. Colloids and Surfaces B: Biointerfaces,2005,43(2):83-94. doi: 10.1016/j.colsurfb.2005.03.014
    [35]
    JIANG H, ZHANG Y, WANG X. Effect of lipases on the surface properties of wheat straw[J]. Industrial Crops and Products,2009,30(2):304-310. doi: 10.1016/j.indcrop.2009.05.009
    [36]
    中国国家标准化管理委员会. 绝热用硬质酚醛泡沫制品(PF): GB/T 20974—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Rigid phenolic foam for thermal insulation(PF): GB/T 20974—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [37]
    WANG X, XIA Q, JING S, et al. Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites[J]. Small,2021,17(18):2008011. doi: 10.1002/smll.202008011
    [38]
    CHE J L, HAN M G, CHANG S H. Compression characteristics, energy absorption, and feasibility evaluation of egg-box panels made of long fibre prepreg sheets[J]. Composite Structures,2021,262:113379. doi: 10.1016/j.compstruct.2020.113379
    [39]
    ŞERBAN D A, WEISSENBORN O, GELLER S, et al. Evaluation of the mechanical and morphological properties of long fibre reinforced polyurethane rigid foams[J]. Polymer Testing,2016,49:121-127. doi: 10.1016/j.polymertesting.2015.11.007
    [40]
    KNUDSEN J N, JENSEN P A, DAM-JOHANSEN K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy and Fuels,2004,18(5):1385-1399. doi: 10.1021/ef049944q
    [41]
    GUO L, ZHAI M, WANG Z, et al. Comprehensive coal quality index for evaluation of coal agglomeration characteristics[J]. Fuel,2018,231:379-386. doi: 10.1016/j.fuel.2018.05.119
    [42]
    HIDALGO J P, TORERO J L, WELCH S. Fire performance of charring closed-cell polymeric insulation materials: Polyisocyanurate and phenolic foam[J]. Fire and Materials,2018,42(4):358-373. doi: 10.1002/fam.2501
    [43]
    MA Y, WANG C, CHU F. Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites[J]. BioResources,2017,12(3):4722-4736.
    [44]
    司耀辉, 陈汉平, 王贤华, 等. 农业秸秆燃烧特性及动力学分析[J]. 华中科技大学学报(自然科学版), 2012, 40(1):128-132.

    SI Yaohui, CHEN Hanping, WANG Xianhua, et al. Combustion characteristics and kinetic analysis of agricultural straw[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2012,40(1):128-132(in Chinese).
    [45]
    KUROKOCHI Y, SATO M. Effect of surface structure, wax and silica on the properties of binderless board made from rice straw[J]. Industrial Crops and Products,2015,77:949-953. doi: 10.1016/j.indcrop.2015.10.007
    [46]
    SONG W, HE Y, WU Y, et al. Characterization of burning behaviors and particulate matter emissions of crop straws based on a cone calorimeter[J]. Materials,2021,14(12):3407. doi: 10.3390/ma14123407
    [47]
    中国国家标准化管理委员会. 建筑材料及制品燃烧性能分级: GB/T 8624—2012[S]. 北京: 中国标准出版社, 2012.

    Standardization Administration of the People's Republic of China. Classification for burning behavior of building materials and products: GB/T 8624—2012[S]. Beijing: China Standards Press, 2012(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (715) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return