Volume 40 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
HU Xuchu, FU Tao. Low velocity impact response of porous metal ceramic functionally graded rectangular plate[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5968-5976. doi: 10.13801/j.cnki.fhclxb.20221223.003
Citation: HU Xuchu, FU Tao. Low velocity impact response of porous metal ceramic functionally graded rectangular plate[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5968-5976. doi: 10.13801/j.cnki.fhclxb.20221223.003

Low velocity impact response of porous metal ceramic functionally graded rectangular plate

doi: 10.13801/j.cnki.fhclxb.20221223.003
Funds:  National Natural Science Foundation of China (52205105); Yunnan Fundamental Research Projects (202101AU070160; 202201AT070145)
  • Received Date: 2022-10-24
  • Accepted Date: 2022-12-09
  • Rev Recd Date: 2022-11-29
  • Available Online: 2022-12-26
  • Publish Date: 2023-10-15
  • In order to study the dynamic response of porous metal ceramic functionally graded rectangular plate under low velocity impact, a numerical analysis model based on Hertzian elastic theory and first-order shear deformation plate theory was presented, the analytical solution of response of porous cermet functionally graded rectangular plate under low velocity impact was obtained. According to Hamilton's principle, the equation of motion of functionally graded rectangular plate was derived, a spring-mass (S-M) model with two degrees of freedom was introduced to obtain the time-dependent contact forces during impact, using the Duhamel principle and Navier method to calculate the transverse displacement of porous functionally graded rectangular plate. The results obtained were compared with literature data to verify the validity. On this basis, the influence of related parameters on the impact resistance of functionally graded rectangular plate was compared and analyzed. The results show that with the decrease of porosity, functionally graded index and width to thickness ratio, the maximum transverse displacement of the functionally graded rectangular plate decreases, energy absorption and impact resistance are increased.

     

  • loading
  • [1]
    TAN C L, CHEW Y, BI G J, et al. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength[J]. Journal of Materials Science & Technology,2021,72:217-222.
    [2]
    KUMAR R, DUTTA S C, PANDA S K. Linear and non-linear dynamic instability of functionally graded plate subjected to non-uniform loading[J]. Composite Structures,2016,154:219-230. doi: 10.1016/j.compstruct.2016.07.050
    [3]
    OKTEM A S, MANTARI J L, SOARES C G. Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory[J]. European Journal of Mechanics A/Solids,2012,36(36):163-172.
    [4]
    叶仁传, 张志浩, 敖力君, 等. 冲击载荷作用下船用软芯功能梯度夹层板动态响应分析[J]. 船舶力学, 2022, 26(6):933-947. doi: 10.3969/j.issn.1007-7294.2022.06.013

    YE Renchuan, ZHANG Zhihao, AO Lijun, et al. Dynamic response of shipbuilding sandwich plates with functionally graded soft core subjected to impulse loading[J]. Journal of Ship Mechanics,2022,26(6):933-947(in Chinese). doi: 10.3969/j.issn.1007-7294.2022.06.013
    [5]
    ABRATE S. Modeling of impacts on composite structures[J]. Composite Structures,2001,51(2):129-138. doi: 10.1016/S0263-8223(00)00138-0
    [6]
    KHALILI S M R, MALEKZADEH K, GORGABAD A V. Low velocity transverse impact response of functionally graded plates with temperature dependent properties[J]. Composite Structures,2013,96:64-74. doi: 10.1016/j.compstruct.2012.07.035
    [7]
    KIRAN M C, KATTIMANI S C, VINYAS M. Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate[J]. Composite Structures,2018,191:36-77. doi: 10.1016/j.compstruct.2018.02.023
    [8]
    DAIKH A A, ZENKOUR A M. Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory[J]. Materials Research Express,2019,6(11):115707. doi: 10.1088/2053-1591/ab48a9
    [9]
    KITIPORNCHAI S, CHEN D, YANG J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets[J]. Materials and Design,2017,116:656-665. doi: 10.1016/j.matdes.2016.12.061
    [10]
    SHOJAEEFARD M H, SAEIDI GOOGARCHIN H, GHADIRI M, et al. Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT[J]. Applied Mathematical Modelling,2017,50:633-655. doi: 10.1016/j.apm.2017.06.022
    [11]
    WANG Y Q, WAN Y H, ZHANG Y F. Vibrations of longitudinally traveling functionally graded material plates with porosities[J]. European Journal of Mechanics A/Solids,2017,66:55-68. doi: 10.1016/j.euromechsol.2017.06.006
    [12]
    WANG Y Q, ZU J W. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment[J]. Aerospace Science and Technology,2017,69:550-562. doi: 10.1016/j.ast.2017.07.023
    [13]
    ŞAHIN Ö S, GÜNEŞ A, ASLAN A, et al. Low-velocity impact behavior of porous metal matrix composites produced by recycling of bronze and iron chip[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering,2019,43(1):53-60. doi: 10.1007/s40997-017-0139-4
    [14]
    GUNES R, AYDIN M, KEMAL APALAK M, et al. Experimental and numerical investigations of low velocity impact on functionally graded circular plates[J]. Composites Part B: Engineering,2014,59:21-32. doi: 10.1016/j.compositesb.2013.11.022
    [15]
    刘涛, 李朝东, 汪超, 等. 基于三阶剪切变形理论的压电功能梯度板静力学等几何分析[J]. 振动与冲击, 2021, 40(1):73-85. doi: 10.13465/j.cnki.jvs.2021.01.011

    LIU Tao, LI Chaodong, WANG Chao, et al. Static iso-geometric analysis of piezoelectric functionally graded plate based on third-order shear deformation theory[J]. Journal of Vibration and Shock,2021,40(1):73-85(in Chinese). doi: 10.13465/j.cnki.jvs.2021.01.011
    [16]
    SUN G Y, WANG E D, WANG H X, et al. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores[J]. Materials & Design,2018,160:1117-1136.
    [17]
    高晟耀, 彭德炜, 唐宇航, 等. 基于一阶剪切变形理论的功能梯度球环振动特性[J]. 复合材料学报, 2020, 37(4):935-943. doi: 10.13801/j.cnki.fhclxb.20190909.001

    GAO Shengyao, PENG Dewei, TANG Yuhang, et al. Free vibration characteristics of functionally graded spherical torus based on first-order shear deformation theory[J]. Acta Materiae Compositae Sinica,2020,37(4):935-943(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190909.001
    [18]
    LARSON R A, PALAZOTTO A N, GARDENIER H E. Impact response of titanium and titanium boride monolithic and functionally graded composite plates[J]. American Institute of Aeronautics and Astronautics,2009,47(3):676-691. doi: 10.2514/1.38577
    [19]
    ICARDI U, FERRERO L. Impact analysis of sandwich composites based on a refined plate element with strain energy updating[J]. Composite Structures,2009,89(1):35-51. doi: 10.1016/j.compstruct.2008.06.018
    [20]
    MAO Y Q, FU Y M. Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate[J]. Journal of Sound and Vibration,2010,329(11):2015-2028. doi: 10.1016/j.jsv.2010.01.005
    [21]
    VLOT A. Impact properties of fibre metal laminates[J]. Composites Engineering,1993,3(10):911-927.
    [22]
    钟锐, 胡双卫, 秦斌, 等. 功能梯度开孔平行四边形板的等几何振动分析[J]. 哈尔滨工程大学学报, 2022, 43(7):999-1005. doi: 10.11990/jheu.202103048

    ZHONG Rui, HU Shuangwei, QIN Bin, et al. Isogeometric vibration analysis of functionally graded perforated parallelogram plates with holes[J]. Journal of Harbin Engineering University,2022,43(7):999-1005(in Chinese). doi: 10.11990/jheu.202103048
    [23]
    ZHOU C L, ZHAN Z X, ZHANG J, et al. Vibration analysis of FG porous rectangular plates reinforced by graphene platelets[J]. Steel and Composite Structures,2020,34(2):215-226.
    [24]
    REDDY J N. Mechanics of laminated composite plates and shells: Theory and analysis[M]. Boca Raton: CRC Press, 2004: 575-578.
    [25]
    TAN T M, SUN C T. Use of statical indentation laws in the impact analysis of laminated composite plates[J]. Journal of Applied Mechanics,1985,52(1):6-12. doi: 10.1115/1.3169029
    [26]
    YANG F L, WANG Y Q, LIU Y F. Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plates[J]. Aerospace Science and Technology,2022,123:107496. doi: 10.1016/j.ast.2022.107496
    [27]
    REZAEI A S, SAIDI A R, ABRISHAMDARI M, et al. Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach[J]. Thin-Walled Structures,2017,120:366-377. doi: 10.1016/j.tws.2017.08.003
    [28]
    WU H Y T, CHANG F K. Transient dynamic analysis of laminated composite plates subjected to transverse impact[J]. Computers and Structures,1989,31(3):453-466. doi: 10.1016/0045-7949(89)90393-3
    [29]
    NAJAFI F, SHOJAEEFARD M H, SAEIDI GOOGARCHIN H. Low-velocity impact response of functionally graded doubly curved panels with Winkler-Pasternak elastic foundation: An analytical approach[J]. Composite Structures,2017,162:351-364. doi: 10.1016/j.compstruct.2016.11.094
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (561) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return