Volume 41 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
SUN Zhaoxu, REN Zetao, SONG Guangping, et al. Simulation analysis of fatigue behavior of SiC fiber reinforced SiC matrix composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4789-4800. doi: 10.13801/j.cnki.fhclxb.20240612.005
Citation: SUN Zhaoxu, REN Zetao, SONG Guangping, et al. Simulation analysis of fatigue behavior of SiC fiber reinforced SiC matrix composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4789-4800. doi: 10.13801/j.cnki.fhclxb.20240612.005

Simulation analysis of fatigue behavior of SiC fiber reinforced SiC matrix composites

doi: 10.13801/j.cnki.fhclxb.20240612.005
Funds:  National Natural Science Foundation of China (51972080)
  • Received Date: 2024-04-01
  • Accepted Date: 2024-06-02
  • Rev Recd Date: 2024-05-29
  • Available Online: 2024-06-12
  • Publish Date: 2024-09-15
  • The continuous carbon fiber reinforced silicon carbide matrix composite (SiCf/SiC) has become an important thermal structural material for the next generation of aerospace engines due to its advantages of lightweight, high-temperature resistance, and high damage tolerance. However, the long fatigue test cycles and high costs severely limit the in-depth understanding and engineering applications of complex microstructures of SiCf/SiC. To fully exploit the advantages and tunability of SiCf/SiC, and to achieve the prediction of structural load response and optimization design, this study analyzed the fatigue life curves of unidirectional, orthogonal, and two-dimensional braiding SiCf/SiC using fatigue hysteresis models and progressive damage theory. The sensitivity evaluations of SiCf/SiC fatigue life were achieved by adjusting parameters such as interfacial shear stress (±20%), fiber strength (±5%), fiber Weibull modulus (±1%), and fiber volume fraction (±5%) through bias processing. The resulting upper and lower bounds of the fatigue life curves enveloped the primary experimental results. Based on the above analysis, a method for fitting fatigue life curves was verified, controlling hazard estimation and conservative estimation with damage parameters. The practicality of this method for practical engineering evaluation was demonstrated with simulated structures of SiCf/SiC turbine blades.

     

  • loading
  • [1]
    罗潇, 徐友良, 郭小军, 等. 涡轮发动机用陶瓷基复合材料涡轮转子研究进展[J]. 推进技术, 2021, 42(1): 230-240.

    LUO Xiao, XU Youliang, GUO Xiaojun, et al. Research progress of ceramic matrix composite turbine rotors for turbine engines[J]. Journal of Propulsion Technology, 2021, 42(1): 230-240(in Chinese).
    [2]
    SHI Y. Development status and prospect of aviation materials in China[J]. IOP Conference Series: Earth and Environmental Science, 2021, 632(5): 052038. doi: 10.1088/1755-1315/632/5/052038
    [3]
    SOMMERS A, WANG Q, HAN X, et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—A review[J]. Applied Thermal Engineering, 2010, 30(11): 1277-1291.
    [4]
    AN Q L, CHEN J, MING W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 28.
    [5]
    PATEL A, SATO E, TAKAGI T, et al. Effect of oxidation on the bending fatigue behavior of an advanced SiC/SiC CMC component at 1000℃ in air[J]. Journal of the European Ceramic Society, 2022, 42(10): 4121-4132. doi: 10.1016/j.jeurceramsoc.2022.03.061
    [6]
    YU J, FEI Q, ZHANG P, et al. Fatigue life of a 2.5D C/SiC composite under tension–tension cyclic loading: experimental investigation and sensitivity analysis[J]. Acta Mechanica Solida Sinica, 2021, 34(5): 645-657. doi: 10.1007/s10338-021-00228-w
    [7]
    ZHANG G P, SCHWAIGER R, VOLKERT C A, et al. Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films[J]. Philosophical Magazine Letters, 2003, 83(8): 477-483. doi: 10.1080/0950083031000151383
    [8]
    MOMON S, GODIN N, REYNAUD P, et al. Unsupervised and supervised classification of AE data collected during fatigue test on CMC at high temperature[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(2): 254-260. doi: 10.1016/j.compositesa.2011.10.016
    [9]
    GAO J, BAI Y, FAN H, et al. Phase-field simulation of microscale crack propagation/deflection in SiCf/SiC composites with weak interphase[J]. Journal of the American Ceramic Society, 2023, 106(8): 4877-4890. doi: 10.1111/jace.19117
    [10]
    SHOJAEI A, LI G, FISH J, et al. Multi-scale constitutive modeling of ceramic matrix composites by continuum damage mechanics[J]. International Journal of Solids and Structures, 2014, 51(23): 4068-4081.
    [11]
    JOHNSON W S, MASTERS J E, O'BRIEN T K, et al. Modeling damage in a plain weave fabric-reinforced composite material[J]. Journal of Composites Technology and Research, 1993, 15(2): 136-142. doi: 10.1520/CTR10364J
    [12]
    梁小强. 编织陶瓷基复合材料结构高温疲劳损伤分析与失效模拟[D]. 南京: 南京航空航天大学, 2021.

    LIANG Xiaoqiang. Fatigue damage analysis and failure simulation of 2D CMCs structure under elevated temperature[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021(in Chinese).
    [13]
    MURTHY P L, NEMETH N N, BREWER D N, et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane[J]. Composites Part B: Engineering, 2008, 39(4): 694-703. doi: 10.1016/j.compositesb.2007.05.006
    [14]
    ROUBY D, REYNAUD P. Fatigue behaviour related to interface modification during load cycling in ceramic-matrix fibre composites[J]. Composites Science and Technology, 1993, 48(1): 109-118.
    [15]
    ZOU X, XU Z, GAO J, et al. An explicit multi-phase field damage model for long fiber-reinforced composites[J]. Composite Structures, 2023, 309: 116737.
    [16]
    YANG Z, PEI C, YAN H, et al. Fatigue damage modeling of ceramic-matrix composites: A short review[J]. Material Design & Processing Communications, 2020, 2(2): e129.
    [17]
    EVANS A G, ZOK F W, MCMEEKING R M. Fatigue of ceramic matrix composites[J]. Acta Metallurgica et Materialia, 1995, 43(3): 859-875. doi: 10.1016/0956-7151(94)00304-Z
    [18]
    MIN J B, XUE D, SHI Y. Micromechanics modeling for fatigue damage analysis designed for fabric reinforced ceramic matrix composites[J]. Composite Structures, 2014, 111: 213-223.
    [19]
    李龙彪. 基于迟滞耗散能的纤维增强陶瓷基复合材料疲劳寿命预测方法[J]. 复合材料学报, 2016, 33(4): 841.

    LI Longbiao. Fatigue life prediction approach of fiber-reinforced ceramic-matrix composites based on hysteresis dissipated energy[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 841(in Chinese).
    [20]
    ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J]. Composites Science and Technology, 1999, 59(6): 833-851. doi: 10.1016/S0266-3538(99)00014-7
    [21]
    LI L B. Effect of cyclic fatigue loading on matrix multiple fracture of fiber-reinforced ceramic-matrix composites[J]. Ceramics, 2019, 2(2): 327-346. doi: 10.3390/ceramics2020027
    [22]
    JING X, CHENG Z, NIU H, et al. Deformation and rupture behaviors of SiC/SiC under creep, fatigue and dwell-fatigue load at 1300℃[J]. Ceramics International, 2019, 45(17): 21440-21447.
    [23]
    YANG Z, LI W, CHEN Y, et al. Life assessment of thermomechanical fatigue in a woven SiC/SiC ceramic matrix composite with an environmental barrier coating at elevated temperature[J]. International Journal of Fatigue, 2023, 172: 107584. doi: 10.1016/j.ijfatigue.2023.107584
    [24]
    李龙彪. 长纤维增强陶瓷基复合材料疲劳损伤模型与寿命预测[D]. 南京: 南京航空航天大学, 2012.

    LI Longbiao. Fatigue damage models and life prediction of long-fiber-reinforced ceramic matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [25]
    PHOENIX S L, RAJ R. Overview no. 100 scalings in fracture probabilities for a brittle matrix fiber composite[J]. Acta Metallurgica et Materialia, 1992, 40(11): 2813-2828. doi: 10.1016/0956-7151(92)90447-M
    [26]
    CURTIN W A. Theory of mechanical properties of ceramic-matrix composites[J]. Journal of the American Ceramic Society, 1991, 74(11): 2837-2845. doi: 10.1111/j.1151-2916.1991.tb06852.x
    [27]
    LEE S S, STINCHCOMB W W. Damage mechanisms of cross-ply Nicalon/CAS-II laminates under cyclic tension[J]. Ceramic Engineering and Science Proceedings, 1994, 15(4): 40-48.
    [28]
    YASMIN A, BOWEN P. Fatigue behaviour of cross-ply Nicalon/CAS-II glass-ceramic matrix composite at room and elevated temperatures[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 83-94. doi: 10.1016/j.compositesa.2003.08.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (143) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return