Citation: | XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248. DOI: 10.13801/j.cnki.fhclxb.20210715.001 |
[1] |
杨亚楠, 夏龙, 张昕宇, 等. Fe3O4@锂铝硅微晶玻璃/还原氧化石墨烯复合材料的制备和吸波性能[J]. 复合材料学报, 2019, 36(11):2651-2664.
YANG Yanan, XIA Long, ZHANG Xiyu, et al. Preparation and microwave absorbing properties of Fe3O4@lithium aluminum silicate glass ceramic/reduced graphene oxide composite[J]. Acta Materiae Compositae Sinica,2019,36(11):2651-2664(in Chinese).
|
[2] |
马志军, 莽昌烨, 翁兴媛, 等. Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为[J]. 复合材料学报, 2019, 36(7):1776-1786.
MA Zhijun, MANG Changyue, WENG Xingyuan, et al. Electromagnetic response behavior of Zn reduced graphene oxide (RGO) and ZnO/RGO self-assembled composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1776-1786(in Chinese).
|
[3] |
LV H, YANG Z, WANG P L, et al. A voltage-boosting strategy enabling a low-frequency, flexible electro-magnetic wave absorption device[J]. Advanced Materials,2018,30(15):1706343. DOI: 10.1002/adma.201706343
|
[4] |
CAO M S, WANG X X, ZHANG M, et al. Variable-tempera-ture electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy[J]. Advanced Materials,2020,32(10):1907156. DOI: 10.1002/adma.201907156
|
[5] |
WANG P, WANG G W, ZHANG J M, et al. Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band[J]. Chemical Engineering Journal,2020,382:122804. DOI: 10.1016/j.cej.2019.122804
|
[6] |
FENG Z, YANG P P, WEN G S, et al. One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption[J]. Applied Surface Science,2020,502:144129. DOI: 10.1016/j.apsusc.2019.144129
|
[7] |
NING M Q, JIANG P H, DING W, et al. Phase manipulating toward molybdenum disulfide for optimizing electro-magnetic wave absorbing in gigahertz[J]. Advanced Functional Materials,2021,31(19):2011229. DOI: 10.1002/adfm.202011229
|
[8] |
KUMAR P. Ultrathin 2D nanomaterials for electro-magnetic interference shielding[J]. Advanced Materials Interfaces,2019,6(24):1901454. DOI: 10.1002/admi.201901454
|
[9] |
CAO M S, SHU J C, WANG X X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen Der Physik,2019,531(4):1800390. DOI: 10.1002/andp.201800390
|
[10] |
NING M Q, MAN Q K, TAN G G, et al. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption[J]. ACS Applied Materials & Interfaces,2020,12(18):20785-20796.
|
[11] |
DING X, HUANG Y, LI S P, et al. 3D Architecture reduced graphene oxide-MoS2 composite: Preparation and excellent electromagnetic wave absorption performance[J]. Composites Part A: Applied Science and Manufacturing,2016,90:424-432. DOI: 10.1016/j.compositesa.2016.08.006
|
[12] |
ZHANG D Q, JIA Y X, CHENG J Y, et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures[J]. Journal of Alloys and Compounds,2018,758:62-71. DOI: 10.1016/j.jallcom.2018.05.130
|
[13] |
WANG R, YANG E Q, QI X S, et al. Constructing and opti-mizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers[J]. Applied Surface Science,2020,516:146159. DOI: 10.1016/j.apsusc.2020.146159
|
[14] |
ZHANG Y, HUANG Y, ZHANG T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials,2015,27(12):2049-2053. DOI: 10.1002/adma.201405788
|
[15] |
LIU Y, CHEN Z, ZHANG Y, et al. Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites[J]. ACS Applied Materials & Interfaces,2018,10(16):13860-13868.
|
[16] |
ZHAO J, ZHANG J L, WANG L, et al. Fabrication and investi-gation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105714. DOI: 10.1016/j.compositesa.2019.105714
|
[17] |
LIU Y, CHEN Z, XIE W H, et al. In-situ growth and graphiti-zation synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):5318-5328.
|
[18] |
ZHOU X F, JIA Z R, FENG A L, et al. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber[J]. Composites Part B: Engi-neering,2020,192:107980. DOI: 10.1016/j.compositesb.2020.107980
|
[19] |
TOCMO R, PENA-FRONTERAS J, CALUMBA K F, et al. Valorization of pomelo peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1969-2012. DOI: 10.1111/1541-4337.12561
|
[20] |
LIU J Y, LI H P, ZHANG H S, et al. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors[J]. Journal of Solid State Chemistry,2018,257:64-71. DOI: 10.1016/j.jssc.2017.07.033
|
[21] |
HU B, WANG K, WU L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials,2010,22(7):813-828. DOI: 10.1002/adma.200902812
|
[22] |
WANG Q, LI H, CHEN L Q, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39(14):2211-2214. DOI: 10.1016/S0008-6223(01)00040-9
|
[23] |
SEVILLA M, LOTA G, FUERTES A B. Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation[J]. Journal of Power Sources,2007,171(2):546-551. DOI: 10.1016/j.jpowsour.2007.05.096
|
[24] |
ZHANG Z, TAN J W, GU W H, et al. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application[J]. Chemical Engineering Journal, 2020, 395: 125190.
|
[25] |
YANG E Q, QI X S, XIE R, et al. Novel "203" type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties[J]. Applied Surface Science,2018,442:622-629. DOI: 10.1016/j.apsusc.2018.02.175
|
[26] |
SUN X, LI Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition,2004,43(5):597-601. DOI: 10.1002/anie.200352386
|
[27] |
DONG N, HE F Z, XIN J L, et al. A novel one-step hydrothermal method to prepare CoFe2O4/graphene-like carbons magnetic separable adsorbent[J]. Materials Research Bulletin,2016,80:186-190. DOI: 10.1016/j.materresbull.2016.04.003
|
[28] |
SEVILLA M, FUERTES A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry-A European Journal,2009,15(16):4195-4203. DOI: 10.1002/chem.200802097
|
[29] |
SEMERCIOZ A S, GOGUS F, ÇELEKLI A, et al. Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu (II)[J]. Journal of Cleaner Production,2017,165:599-610. DOI: 10.1016/j.jclepro.2017.07.159
|
[30] |
VOLPE M, MESSINEO A, MAKELA M, et al. Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass[J]. Fuel Processing Technology,2020,206:106456. DOI: 10.1016/j.fuproc.2020.106456
|
[31] |
ZHAO H Q, CHENG Y, LIU W, et al. Biomass-derived porous carbon-based nanostructures for microwave absorption[J]. Nano-Micro Letters,2019,11(1):81-97. DOI: 10.1007/s40820-019-0312-y
|
[32] |
ZHANG W L, JIANG D G, WANG X X, et al. Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis[J]. Journal of Physical Chemistry C,2017,121(9):4989-4998. DOI: 10.1021/acs.jpcc.6b11656
|
[33] |
WANG Y L, YANG S H, WANG H Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber[J]. Carbon,2020,167:485-494. DOI: 10.1016/j.carbon.2020.06.014
|
[34] |
ZHAO H Q, CHENG Y, ZHANG Z, et al. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties[J]. Carbon,2021,173:501-511. DOI: 10.1016/j.carbon.2020.11.035
|
[35] |
WU Z C, TIAN K, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces,2018,10(13):11108-11115.
|
[36] |
WANG Y, DI X C, WU X M, et al. MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchi-cal structure as a high-efficiency electromagnetic wave absorber[J]. Journal of Alloys and Compounds,2020,846:156215. DOI: 10.1016/j.jallcom.2020.156215
|
[37] |
SHU R W, ZHANG G Y, ZHANG C, et al. Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels[J]. Advanced Electronic Materials,2020,7(2):2001001.
|
[38] |
WANG Y F, CHEN D L, YIN X, et al. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber[J]. ACS Applied Materials & Interfaces,2015,7(47):26226-26234.
|
[39] |
MO Z C, YANG R L, LU D W, et al. Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance[J]. Carbon,2019,144:433-439. DOI: 10.1016/j.carbon.2018.12.064
|
1. |
李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 .
![]() | |
2. |
马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 .
![]() |