Volume 39 Issue 5
Mar.  2022
Turn off MathJax
Article Contents
XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248. doi: 10.13801/j.cnki.fhclxb.20210715.001
Citation: XIE Wenhan, GENG Haoran, LIU Yang, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248. doi: 10.13801/j.cnki.fhclxb.20210715.001

Preparation and microwave absorbing properties of MoS2/biomass carbon composite

doi: 10.13801/j.cnki.fhclxb.20210715.001
  • Received Date: 2021-05-12
  • Accepted Date: 2021-06-30
  • Rev Recd Date: 2021-06-14
  • Available Online: 2021-07-15
  • Publish Date: 2022-03-23
  • In order to solve the problem of low conductivity of MoS2 absorbing material, the MoS2/biomass carbon (BC) composite material was prepared by using shaddock peel (SP) as the raw material, using one-pot hydro-thermal and high-temperature calcination methods. The content of MoS2 in the composite material was adjusted by adjusting the content of the initial Mo source and S source. The results of microscopic morphology, structure and electromagnetic parameters show that with the increase of the MoS2 content in the composite material, the scattered distribution of MoS2 on the BC surface changes from flakes to flower-like coatings, and the conductivity and complex permittivity of MoS2/BC composites gradually decrease. By adjusting the ratio of MoS2 to BC, the effective control of the electromagnetic parameters of the MoS2/BC composite material is realized, and its impedance matching characteristics are optimized. The flower-like structure of MoS2 facilitates the multiple reflection/scattering of electromagnetic waves. At the same time, there are abundant interfaces between flower-like MoS2 and BC, which is beneficial to promote interface polarization and enhance the attenuation ability of MoS2/BC composites to electromagnetic waves. The prepared MoS2/BC-0.8 has a minimum reflectance loss (RL) value of –40.1 dB, and an effective absorption bandwidth of up to 5.9 GHz (11.1-17.0 GHz).

     

  • loading
  • [1]
    杨亚楠, 夏龙, 张昕宇, 等. Fe3O4@锂铝硅微晶玻璃/还原氧化石墨烯复合材料的制备和吸波性能[J]. 复合材料学报, 2019, 36(11):2651-2664.

    YANG Yanan, XIA Long, ZHANG Xiyu, et al. Preparation and microwave absorbing properties of Fe3O4@lithium aluminum silicate glass ceramic/reduced graphene oxide composite[J]. Acta Materiae Compositae Sinica,2019,36(11):2651-2664(in Chinese).
    [2]
    马志军, 莽昌烨, 翁兴媛, 等. Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为[J]. 复合材料学报, 2019, 36(7):1776-1786.

    MA Zhijun, MANG Changyue, WENG Xingyuan, et al. Electromagnetic response behavior of Zn reduced graphene oxide (RGO) and ZnO/RGO self-assembled composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1776-1786(in Chinese).
    [3]
    LV H, YANG Z, WANG P L, et al. A voltage-boosting strategy enabling a low-frequency, flexible electro-magnetic wave absorption device[J]. Advanced Materials,2018,30(15):1706343. doi: 10.1002/adma.201706343
    [4]
    CAO M S, WANG X X, ZHANG M, et al. Variable-tempera-ture electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy[J]. Advanced Materials,2020,32(10):1907156. doi: 10.1002/adma.201907156
    [5]
    WANG P, WANG G W, ZHANG J M, et al. Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band[J]. Chemical Engineering Journal,2020,382:122804. doi: 10.1016/j.cej.2019.122804
    [6]
    FENG Z, YANG P P, WEN G S, et al. One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption[J]. Applied Surface Science,2020,502:144129. doi: 10.1016/j.apsusc.2019.144129
    [7]
    NING M Q, JIANG P H, DING W, et al. Phase manipulating toward molybdenum disulfide for optimizing electro-magnetic wave absorbing in gigahertz[J]. Advanced Functional Materials,2021,31(19):2011229. doi: 10.1002/adfm.202011229
    [8]
    KUMAR P. Ultrathin 2D nanomaterials for electro-magnetic interference shielding[J]. Advanced Materials Interfaces,2019,6(24):1901454. doi: 10.1002/admi.201901454
    [9]
    CAO M S, SHU J C, WANG X X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen Der Physik,2019,531(4):1800390. doi: 10.1002/andp.201800390
    [10]
    NING M Q, MAN Q K, TAN G G, et al. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption[J]. ACS Applied Materials & Interfaces,2020,12(18):20785-20796.
    [11]
    DING X, HUANG Y, LI S P, et al. 3D Architecture reduced graphene oxide-MoS2 composite: Preparation and excellent electromagnetic wave absorption performance[J]. Composites Part A: Applied Science and Manufacturing,2016,90:424-432. doi: 10.1016/j.compositesa.2016.08.006
    [12]
    ZHANG D Q, JIA Y X, CHENG J Y, et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures[J]. Journal of Alloys and Compounds,2018,758:62-71. doi: 10.1016/j.jallcom.2018.05.130
    [13]
    WANG R, YANG E Q, QI X S, et al. Constructing and opti-mizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers[J]. Applied Surface Science,2020,516:146159. doi: 10.1016/j.apsusc.2020.146159
    [14]
    ZHANG Y, HUANG Y, ZHANG T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials,2015,27(12):2049-2053. doi: 10.1002/adma.201405788
    [15]
    LIU Y, CHEN Z, ZHANG Y, et al. Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites[J]. ACS Applied Materials & Interfaces,2018,10(16):13860-13868.
    [16]
    ZHAO J, ZHANG J L, WANG L, et al. Fabrication and investi-gation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105714. doi: 10.1016/j.compositesa.2019.105714
    [17]
    LIU Y, CHEN Z, XIE W H, et al. In-situ growth and graphiti-zation synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):5318-5328.
    [18]
    ZHOU X F, JIA Z R, FENG A L, et al. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber[J]. Composites Part B: Engi-neering,2020,192:107980. doi: 10.1016/j.compositesb.2020.107980
    [19]
    TOCMO R, PENA-FRONTERAS J, CALUMBA K F, et al. Valorization of pomelo peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1969-2012. doi: 10.1111/1541-4337.12561
    [20]
    LIU J Y, LI H P, ZHANG H S, et al. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors[J]. Journal of Solid State Chemistry,2018,257:64-71. doi: 10.1016/j.jssc.2017.07.033
    [21]
    HU B, WANG K, WU L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials,2010,22(7):813-828. doi: 10.1002/adma.200902812
    [22]
    WANG Q, LI H, CHEN L Q, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39(14):2211-2214. doi: 10.1016/S0008-6223(01)00040-9
    [23]
    SEVILLA M, LOTA G, FUERTES A B. Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation[J]. Journal of Power Sources,2007,171(2):546-551. doi: 10.1016/j.jpowsour.2007.05.096
    [24]
    ZHANG Z, TAN J W, GU W H, et al. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application[J]. Chemical Engineering Journal, 2020, 395: 125190.
    [25]
    YANG E Q, QI X S, XIE R, et al. Novel "203" type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties[J]. Applied Surface Science,2018,442:622-629. doi: 10.1016/j.apsusc.2018.02.175
    [26]
    SUN X, LI Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition,2004,43(5):597-601. doi: 10.1002/anie.200352386
    [27]
    DONG N, HE F Z, XIN J L, et al. A novel one-step hydrothermal method to prepare CoFe2O4/graphene-like carbons magnetic separable adsorbent[J]. Materials Research Bulletin,2016,80:186-190. doi: 10.1016/j.materresbull.2016.04.003
    [28]
    SEVILLA M, FUERTES A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry-A European Journal,2009,15(16):4195-4203. doi: 10.1002/chem.200802097
    [29]
    SEMERCIOZ A S, GOGUS F, ÇELEKLI A, et al. Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu (II)[J]. Journal of Cleaner Production,2017,165:599-610. doi: 10.1016/j.jclepro.2017.07.159
    [30]
    VOLPE M, MESSINEO A, MAKELA M, et al. Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass[J]. Fuel Processing Technology,2020,206:106456. doi: 10.1016/j.fuproc.2020.106456
    [31]
    ZHAO H Q, CHENG Y, LIU W, et al. Biomass-derived porous carbon-based nanostructures for microwave absorption[J]. Nano-Micro Letters,2019,11(1):81-97. doi: 10.1007/s40820-019-0312-y
    [32]
    ZHANG W L, JIANG D G, WANG X X, et al. Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis[J]. Journal of Physical Chemistry C,2017,121(9):4989-4998. doi: 10.1021/acs.jpcc.6b11656
    [33]
    WANG Y L, YANG S H, WANG H Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber[J]. Carbon,2020,167:485-494. doi: 10.1016/j.carbon.2020.06.014
    [34]
    ZHAO H Q, CHENG Y, ZHANG Z, et al. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties[J]. Carbon,2021,173:501-511. doi: 10.1016/j.carbon.2020.11.035
    [35]
    WU Z C, TIAN K, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces,2018,10(13):11108-11115.
    [36]
    WANG Y, DI X C, WU X M, et al. MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchi-cal structure as a high-efficiency electromagnetic wave absorber[J]. Journal of Alloys and Compounds,2020,846:156215. doi: 10.1016/j.jallcom.2020.156215
    [37]
    SHU R W, ZHANG G Y, ZHANG C, et al. Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels[J]. Advanced Electronic Materials,2020,7(2):2001001.
    [38]
    WANG Y F, CHEN D L, YIN X, et al. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber[J]. ACS Applied Materials & Interfaces,2015,7(47):26226-26234.
    [39]
    MO Z C, YANG R L, LU D W, et al. Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance[J]. Carbon,2019,144:433-439. doi: 10.1016/j.carbon.2018.12.064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (1727) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return