Volume 39 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
DENG Yabin, REN Yiru, JIANG Hongyong. Oblique crushing failure behaviors of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1790-1797. doi: 10.13801/j.cnki.fhclxb.20210617.002
Citation: DENG Yabin, REN Yiru, JIANG Hongyong. Oblique crushing failure behaviors of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1790-1797. doi: 10.13801/j.cnki.fhclxb.20210617.002

Oblique crushing failure behaviors of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism

doi: 10.13801/j.cnki.fhclxb.20210617.002
  • Received Date: 2021-04-15
  • Accepted Date: 2021-06-10
  • Rev Recd Date: 2021-05-18
  • Available Online: 2021-06-17
  • Publish Date: 2022-04-01
  • An effective triggering mechanism can induce and improve the axial progressive crushing behaviors, but the instability problem of automotive energy-absorbing structure under the oblique crushing load has not been solved. To propose new designs to improve the instability behaviors, the oblique crushing behaviors and failure mechanisms of composite energy-absorbing circular tube under the semi-circular cavity triggering mechanism were studied. The finite element model of circular tube with semi-circular cavity triggering mechanism was established, and the interface and intralaminar nonlinear damage evolution model was adopted to simulate its actual crushing failure modes. The axial crushing load, energy-absorption and failure modes corresponding to simulation and experiment were compared to validate the crushing model of circular tube. Further, the effect of oblique crushing angle on the crushing behaviors of circular tube under the semi-circular cavity triggering mechanism was predicted, and both the axial and oblique crushing failure mechanisms and their differences were revealed in detail. Results show that the crushing load, energy-absorption and failure areas obviously decrease with the increasing the angle, and the failure energy-dissipation of material is inadequate due to unstable crushing process. The circular tube under the axial crushing exhibits progressive failure, but is featured by a transition from progressive failure to instable failure for the oblique crushing, leading to a transition occurring in oblique crushing load and energy-absorption curves. This study deepens an understanding for oblique crushing failure mechanisms of circular tube under an external triggering mechanism, providing some design bases for improving instability behaviors of oblique crushing.

     

  • loading
  • [1]
    王雪琴, 张震东, 马大为, 等. 碳纤维增强环氧树脂复合材料圆管多胞填充结构吸能特性的准静态压缩试验研究[J]. 复合材料学报, 2021, 38(9):2894-2903.

    WANG Xueqin, ZHANG Zhendong, MA Dawei, et al. Quasi-static compression experimental study on energy absorption characteristics of multicellular structures filled with carbon fiber reinforced epoxy composite tubes[J]. Acta Materiae Compositae Sinica,2021,38(9):2894-2903(in Chinese).
    [2]
    杨旭东, 安涛, 冯晓琳, 等. 泡沫铝填充碳纤维增强树脂复合材料薄壁管的压缩变形行为与吸能特性[J]. 复合材料学报, 2020, 37(8):1850-1860.

    YANG Xudong, AN Tao, FENG Xiaolin, et al. Compressive deformation behavior and energy absorption of Al foam-filled carbon fiber reinforced plastic thin-walled tube[J]. Acta Materiae Compositae Sinica,2020,37(8):1850-1860(in Chinese).
    [3]
    张徐梁, 阳玉球, 阎建华, 等. 碳纤维-玻璃纤维混杂增强环氧树脂三维编织复合材料薄壁圆管压溃吸能特性与损伤机制[J]. 复合材料学报, 2021, 38(9):2821-2828.

    ZHANG Xuliang, YANG Yuqiu, YAN Jianhua, et al. Crushing energy absorption characteristics and damage mechanism of carbon fiber-glass fiber hybrid reinforced epoxy three-dimensional braided composite thin-walled circular tube[J]. Acta Materiae Compositae Sinica,2021,38(9):2821-2828(in Chinese).
    [4]
    JIANG H, REN Y. Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load[J]. Composite Structures,2019,229:111375. doi: 10.1016/j.compstruct.2019.111375
    [5]
    JIANG H, REN Y, GAO B. Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness[J]. Thin-Walled Structures,2017,119:531-543. doi: 10.1016/j.tws.2017.07.004
    [6]
    张厚江, 陈五一, 陈鼎昌. 碳纤维复合材料(CFRP)钻孔出口缺陷的研究[J]. 机械工程学报, 2004, 40(7):150-155. doi: 10.3321/j.issn:0577-6686.2004.07.031

    ZHANG Houjiang, CHEN Wuyi, CHEN Dingchang. Investigation of the exit defects in drilling carbon fibre-reinforced plastic plates[J]. Journal of Mechanical Engineering,2004,40(7):150-155(in Chinese). doi: 10.3321/j.issn:0577-6686.2004.07.031
    [7]
    SIGALAS I, KUMOSA M, HULL D. Trigger mechanisms in energy-absorbing glass cloth/epoxy tubes[J]. Composites Science and Technology, 1991, 40(3): 265-287.
    [8]
    龚俊杰, 王鑫伟. 复合材料波纹梁吸能能力的数值模拟[J]. 航空学报, 2005, 26(3):298-302. doi: 10.3321/j.issn:1000-6893.2005.03.009

    GONG Junjie, WANG Xinwei. Numerical simulation of energy absorption capability of composite waved beams[J]. Acta Aeronautica et Astronautica Sinica,2005,26(3):298-302(in Chinese). doi: 10.3321/j.issn:1000-6893.2005.03.009
    [9]
    孟祥吉, 燕瑛, 罗海波, 等. 复合材料波纹梁冲击试验与数值模拟[J]. 复合材料学报, 2015, 32(1):196-203.

    MENG Xiangji, YAN Ying, LUO Haibo, et al. Impact tests and numerical simulation of composite waved-beam[J]. Acta Materiae Compositae Sinica,2015,32(1):196-203(in Chinese).
    [10]
    ZHAO X, ZHU G, ZHOU C, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J]. Composite Structure,2019,222:110920. doi: 10.1016/j.compstruct.2019.110920
    [11]
    JIANG H, REN Y, GAO B, et al. Design of novel plug-type triggers for composite square tubes: Enhancement of energy-absorption capacity and inducing failure mechanisms[J]. International Journal of Mechanical Sciences,2017,131-132:113-136. doi: 10.1016/j.ijmecsci.2017.06.050
    [12]
    REN Y, JIANG H, LIU Z. Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes[J]. International Journal of Mechanical Sciences,2019,157-158:1-12. doi: 10.1016/j.ijmecsci.2019.04.024
    [13]
    FERABOLI P, WADE B, DELEO F, et al. Crush energy absorption of composite channel section specimens[J]. Composites Part A: Applied Science and Manufacturing,2009,40:1248-1256. doi: 10.1016/j.compositesa.2009.05.021
    [14]
    蒋宏勇, 任毅如, 袁秀良. 基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究[J]. 航空学报, 2017, 35(38):22717.

    JIANG Hongyong, REN Yiru, YUAN Xiuliang, et al. Crashworthiness of composite corrugated beam based on nonlinear progressive damage model[J]. Acta Aeronautica et Astronautica Sinica,2017,35(38):22717(in Chinese).
    [15]
    JIANG H, REN Y, ZHENG J. Gradient-degraded material-induced trigger to improve crashworthiness of composite tubes in a controlled manner[J]. Journal of Reinforced Plastics and Composites,2020,39(1-2):60-77. doi: 10.1177/0731684419872004
    [16]
    CHIU L N S, FALZON B G, RUAN D, et al. Crush responses of composite cylinder under quasi-static and dynamic loading[J]. Composite Structures,2015,131:90-98. doi: 10.1016/j.compstruct.2015.04.057
    [17]
    PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Crushing and energy absorption performance of different geometrical shapes of small-scale glass/polyester compo-site tubes under quasi-static loading conditions[J]. Composite Structures,2011,93(2):992-1007. doi: 10.1016/j.compstruct.2010.06.021
    [18]
    PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and triggering modelling[J]. Polymer Testing,2010,29(6):729-741. doi: 10.1016/j.polymertesting.2010.05.010
    [19]
    SIROMANI D, HENDERSON G, MIKITA D, et al. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression[J]. Composites Part A: Applied Science and Manufacturing,2014,64(21):25-35.
    [20]
    CHEN Y, YE L, ESCOBEDO-DIAZ J P, et al. Effect of initiator geometry on energy absorption of CFRP tubes under dynamic crushing[J]. International Journal of Crashworthiness,2020,26(5):526-536.
    [21]
    TONG Y, XU Y. Improvement of crash energy absorption of 2D braided composite tubes through an innovative chamfer external triggers[J]. International Journal of Impact Engineering,2018,111:11-20. doi: 10.1016/j.ijimpeng.2017.08.002
    [22]
    JOHNSON A F. Modelling fabric reinforced composites under impact loads[J]. Composites Part A: Applied Science and Manufacturing,2001,32:1197-1206.
    [23]
    SOKOLINSKY V S, INDERMUEHLE K C, HURTADO J A. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing,2011,42:1119-1126. doi: 10.1016/j.compositesa.2011.04.017
    [24]
    ABAQUS 6.13. Analysis user’s manual[M]. Dassault Systèmes, 2013.
    [25]
    MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. A thermodynamically consistent damage model for advanced compo-sites: NASA/TM-2006-214282[R]. Washington: NASA, 2006.
    [26]
    BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology,1996,56(4):439-449. doi: 10.1016/0266-3538(96)00005-X
    [27]
    ZHU G, SUN G, YU H, et al. Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading[J]. International Journal of Mechanical Sciences,2018,135:458-483. doi: 10.1016/j.ijmecsci.2017.11.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1053) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return