CHEN Jianwen, LIU Xiangwei, HU Yuhang, et al. Uniaxial tensile central tearing behaviors of ethylene tetrafluoroethylene foils[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Jianwen, LIU Xiangwei, HU Yuhang, et al. Uniaxial tensile central tearing behaviors of ethylene tetrafluoroethylene foils[J]. Acta Materiae Compositae Sinica.

Uniaxial tensile central tearing behaviors of ethylene tetrafluoroethylene foils

Funds: The National Natural Science Foundation of China (51608270; 51708345; 52278191); the Science and Technology Support Program of Jiangsu Province (BK20191290); Fundamental Research Funds for the Central Universities (30920021143); China Postdoctoral Science Foundation (2017T100371)
More Information
  • Received Date: August 19, 2024
  • Revised Date: September 29, 2024
  • Accepted Date: October 18, 2024
  • Available Online: October 29, 2024
  • Aiming at the safety of ethylene tetrafluoroethylene (ETFE) foil structural membrane surface, which is caused by initial defects and puncture of flying objects, leading to the attenuation of structural bearing capacity and damage, a series of uniaxial central tearing tests were carried out on ETFE foils combined with the digital image correlation (DIC) technology, and the effects of slit length, slit angle and notch shape on the tearing mechanical behaviors of the foils were analyzed in depth. The results show that the typical tearing propagation process of ETFE foils exhibits four characteristic states. Local defects can significantly affect the locations of the out-of-plane warping and the failure modes of the foils. The typical tearing strength-displacement curve can be divided into three characteristic phases: the pre-tearing phase, the tearing resistance rising phase, and the post-tearing phase. The ultimate tearing strength of the foils decreases with the increase of slit length and increases with the increase of slit angle. The notch shapes cause the foils to exhibit brittle-like or ductile-like damage characteristics upon complete damage. The “one” shaped slit and the right-angle edge notch tend to cause stress concentration, leading to significant degradation of the foil's load-bearing properties. The conclusions obtained can provide useful references for the study of the tearing mechanical properties of ETFE foils and the safety assessment of ETFE membrane structures.
  • [1]
    KARADI D T, HEGYI D. An extensive review on the viscoelastic-plastic and fractural mechanical behaviour of ETFE membranes[J]. Periodica Polytechnica Architecture, 2021, 52(2): 121-134. DOI: 10.3311/PPar.18403
    [2]
    严慧, 吕子正, 韦国岐. 膜结构的风损事故及防范[J]. 建筑结构, 2008, 38(7): 113-116.

    YAN Hui, LV Zizheng, WEI Guoqi. Wind damage accidents of membrane structures and countermeasures[J]. Building Structure, 2008, 38(7): 113-116(in Chinese).
    [3]
    吴明儿, 慕仝, 刘建明. ETFE薄膜循环拉伸试验及徐变试验[J]. 建筑材料学报, 2008, 11(6): 690-694. DOI: 10.3969/j.issn.1007-9629.2008.06.012

    WU Minger, MU Tong, LIU Jianming. Cycle loading and creep tests of ETFE foil[J]. Journal of Building Materials, 2008, 11(6): 690-694(in Chinese). DOI: 10.3969/j.issn.1007-9629.2008.06.012
    [4]
    吴明儿, 赏莹莹, 李殷堂. ETFE薄膜材料参数设计值研究[J]. 建筑结构学报, 2014, 35(5): 114-119.

    WU Minger, SHANG Yingying, LI Yintang. Study on design values of material parameters of ETFE foil[J]. Journal of Building Structures, 2014, 35(5): 114-119(in Chinese).
    [5]
    吴明儿, 赏莹莹, 李殷堂. 双轴拉伸下ETFE薄膜材料力学性能[J]. 建筑材料学报, 2014, 17(4): 623-626. DOI: 10.3969/j.issn.1007-9629.2014.04.011

    WU Minger, SHANG Yingying, LI Yintang. Biaxial tensile mechanical properties of ETFE foil[J]. Journal of Building Materials, 2014, 17(4): 623-626(in Chinese). DOI: 10.3969/j.issn.1007-9629.2014.04.011
    [6]
    崔家春, 杨联萍, 吴明儿. ETFE薄膜低温单向拉伸性能[J]. 建筑材料学报, 2013, 16(4): 725-729. DOI: 10.3969/j.issn.1007-9629.2013.04.031

    CUI Jiachun, YANG Lianping, WU Minger. Uniaxial tensile properties of ETFE film at low-temperature condition[J]. Journal of Building Materials, 2013, 16(4): 725-729(in Chinese). DOI: 10.3969/j.issn.1007-9629.2013.04.031
    [7]
    崔家春, 吴明儿, 杨联萍. ETFE薄膜双向力学性能试验研究[J]. 建筑材料学报, 2016, 19(5): 866-870. DOI: 10.3969/j.issn.1007-9629.2016.05.014

    CUI Jiachun, WU Minger, YANG Lianping. Experimental study on biaxial mechanical properties of ETFE film[J]. Journal of Building Materials, 2016, 19(5): 866-870(in Chinese). DOI: 10.3969/j.issn.1007-9629.2016.05.014
    [8]
    胡建辉, 陈务军, 孙瑞, 等. ETFE薄膜单轴循环拉伸力学性能[J]. 建筑材料学报, 2015, 18(1): 69-75. DOI: 10.3969/j.issn.1007-9629.2015.01.013

    HU Jianhui, CHEN Wujun, SUN Rui, et al. Mechanical properties of ETFE foils under uniaxial cyclic tensile loading[J]. Journal of Building Materials, 2015, 18(1): 69-75(in Chinese). DOI: 10.3969/j.issn.1007-9629.2015.01.013
    [9]
    ZHANG M Y, ZHANG Y Y, ZHOU G C, et al. Essential design strength and unified strength condition of ETFE membrane material[J]. Polymers, 2022, 14(23): 5166. DOI: 10.3390/polym14235166
    [10]
    SURHOLT F, RUNGE D, UHLEMANN J, et al. Mechanical-technological behaviour of ETFE foils and their welded connections[J]. Stahlbau, 2022, 91(8): 513-523. DOI: 10.1002/stab.202200039
    [11]
    ZHAO B, HU J H, CHEN W J, et al. Simultaneous uniaxial creep testing of time-dependent membrane materials with optical devices[J]. Materials Today Communications, 2019, 21: 100655. DOI: 10.1016/j.mtcomm.2019.100655
    [12]
    ZHAO B, HU J H, CHEN W J, et al. Uniaxial tensile creep properties of ETFE foils at a wide range of loading stresses subjected to long-term loading[J]. Construction and Building Materials, 2020, 253: 119112. DOI: 10.1016/j.conbuildmat.2020.119112
    [13]
    ZHAO B, CHEN W J. Experimental study and constitutive modeling on viscoelastic-plastic mechanical properties of ETFE foils subjected to uniaxial monotonic tension at various strain rates[J]. Construction and Building Materials, 2020, 263: 120060. DOI: 10.1016/j.conbuildmat.2020.120060
    [14]
    CHEN J W, CHEN W J, ZHAO B, et al. Mechanical responses and damage morphology of laminated fabrics with a central slit under uniaxial tension: A comparison between analytical and experimental results[J]. Construction and Building Materials, 2015, 101: 488-502. DOI: 10.1016/j.conbuildmat.2015.10.134
    [15]
    CHEN J W, CHEN W J, ZHOU H, et al. Central tearing characteristics of laminated fabrics: Effect of slit parameter, off-axis angle, and loading speed[J]. Journal of Reinforced Plastics and Composites, 2017, 36(13): 921-941. DOI: 10.1177/0731684417695460
    [16]
    CHEN J W, CHEN W J. Central crack tearing testing of laminated fabric Uretek3216LV under uniaxial and biaxial static tensile loads[J]. American Society of Civil Engineers, 2016, 28(7): 4016028.
    [17]
    陈建稳, 马俊杰, 赵兵, 等. 双轴经编织物膜梯形撕裂扩展机制及其拉剪耦合行为[J]. 复合材料学报, 2023, 40(12): 6922-6933.

    CHEN Jianwen, MA Junjie, ZHAO Bing, et al. Trapezoidal tearing propagation mechanisms of biaxial-warp-knitted fabric composites and tensile-shear coupling behaviors involved[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6922-6933(in Chinese).
    [18]
    SUN X Y, HE R J, WU Y, et al. Uniaxial tearing properties and the tearing residual strength models of PTFE coated fabric[J]. Structures, 2021, 33: 1354-1364. DOI: 10.1016/j.istruc.2021.05.019
    [19]
    SUN X Y, HE R J, WU Y. A novel tearing residual strength model for architectural coated fabrics with central crack[J]. Construction and Building Materials, 2020, 263: 120133. DOI: 10.1016/j.conbuildmat.2020.120133
    [20]
    ZHANG Y Y, XU J H, ZHOU Y, et al. Central tearing behaviors of PVC coated fabrics with initial notch[J]. Composite Structures, 2019, 208: 618-633. DOI: 10.1016/j.compstruct.2018.09.104
    [21]
    牛瀚仪, 陈波, 袁志颖. 基于声发射-数字图像相关技术的泡沫混凝土冻融破坏特征及损伤演化规律[J]. 复合材料学报, 2024, 42: 1-11.

    NIU Hanyi, CHEN Bo, YUAN Zhiying. Freeze-thaw damage characteristics and evolution law of foam concrete based on acoustic emission-digital image correlation technique[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-11(in Chinese).
    [22]
    杨露, 校金友, 文立华, 等. PBO纤维增强环氧树脂复合材料层间I型断裂韧性的DIC技术测量[J]. 复合材料学报, 2023, 40(1): 72-82.

    YANG Lu, XIAO Jinyou, WEN Lihua, et al. Mode I interlaminar fracture toughness measurement of PBO fiber reinforced epoxy composites by DIC technology[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 72-82(in Chinese).
    [23]
    黄鲛, 陈婧旖, 罗磊, 等. 基于数字图像技术的C/SiC复合材料拉伸行为与失效机制[J]. 复合材料学报, 2022, 39(5): 2387-2397.

    HUANG Jiao, CHEN Jingyi, LUO Lei, et al. Tensile behavior and failure mechanism of C/SiC composite based on digital image technology[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2387-2397(in Chinese).
    [24]
    吴明儿. ETFE薄膜材料[J]. 世界建筑, 2009, (10): 104-105.

    WU Minger. ETFE film materials[J]. World Architecture, 2009, (10): 104-105(in Chinese).
    [25]
    GB/T 1040.3-2006, 塑料 拉伸性能的测定 第3部分: 薄膜和薄片的试验条件[S].

    GB/T 1040.3-2006, Plastics-Determination of tensile properties-Part 3: Test conditions for foils and sheets[S] (in Chinese).
    [26]
    WANG K, TAO Q, WANG C G. Tensile–tearing analysis of rectangular thin film with central defect[J]. AIAA Journal, 2021, 59(9): 3781-3786. DOI: 10.2514/1.J060446
    [27]
    刘岩, 刘俨震. Kapton薄膜单轴拉伸中心撕裂性能研究[J]. 武汉大学学报(理学版), 2022, 68(3): 262-270.

    LIU Yan, LIU Yanzhen. Experimental research on uniaxial tensile center tearing behaviors of Kapton foils[J]. Journal of Wuhan University(Natural Science Edition), 2022, 68(3): 262-270(in Chinese).
  • Related Articles

    [1]NIU Hanyi, CHEN Bo, YUAN Zhiying. Freeze-thaw damage characteristics and evolution law of foam concrete based on acoustic emission-digital image correlation technique[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2728-2738. DOI: 10.13801/j.cnki.fhclxb.20240718.004
    [2]ZHAN Mingfan, WANG Jihui, NI Aiqing, YANG Bin, LI Shuxin, PENG Yunsong. In-plane permeability characterization of fiber fabric based on digital image technology[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4180-4189. DOI: 10.13801/j.cnki.fhclxb.20210312.008
    [3]HE Tiren, LIU Liu, XU Jifeng. Digital image correlation aided method for identification of nonlinear constitutive parameters of IM7/8552 carbon fiber/epoxy composite unidirectional laminate along thickness directionction[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 177-185. DOI: 10.13801/j.cnki.fhclxb.20200316.001
    [4]YANG Ao, CHEN Puhui, KONG Bin, GAN Jian, YANG Jiayong. Application of digital image correlation technology in compression test of stringer stiffened composite curved panels[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2439-2451. DOI: 10.13801/j.cnki.fhclxb.20200121.002
    [5]DING Chunxiang, PAN Mingzhu, YANG Shuxin, MEI Changtong. Interfacial mechanical behavior of wood fiber/high density polyethylene composites based on digital image correlation[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2173-2182. DOI: 10.13801/j.cnki.fhclxb.20200122.001
    [6]ZHAO Yanru, HAO Song, WANG Lei, LIU Yujiao, SHI Jinna. Impact damage characteristics of steel fiber reinforced cement matrix composites based on digital image correlation[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1325-1331. DOI: 10.13801/j.cnki.fhclxb.20170802.002
    [7]LV Shuangqi, MA Yinwei, YANG Xiaoguang, SHI Duoqi, TENG Xuefeng, QI Hongyu. Anisotropic thermal deformation measurement of aerogel composites based on digital image correlation method[J]. Acta Materiae Compositae Sinica, 2017, 34(9): 2020-2029. DOI: 10.13801/j.cnki.fhclxb.20170103.001
    [8]WANG Lan, JIA Yongjie, ZHANG Dawei, HU Jiangsan. Crack resistance of polymer modified asphalt mixture based on digital speckle correlation technique[J]. Acta Materiae Compositae Sinica, 2016, 33(9): 2123-2131. DOI: 10.13801/j.cnki.fhclxb.20160112.007
    [9]LYU Shuangqi, SHI Duoqi, YANG Xiaoguang, SUN Yantao, FENG Jian. Mechanical tests of mullite fiber reinforced aerogel composites using digital image correlation method[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1428-1435. DOI: 10.13801/j.cnki.fhclxb.20150105.002
    [10]Experimental investigation of the quasi-static mixed-mode crack initiation in NiCr/ZrO2functionally graded materials by digital image correlation[J]. Acta Materiae Compositae Sinica, 2009, 26(6): 150-154.

Catalog

    Article Metrics

    Article views (61) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return