Xu Sheng-jin, Song Yu, Wang Ben-li, et al. INVESTIGATION OF DYNAMIC BEHAVIOR OF ORTHOTROPIC HONEYCOMB SANDWICH PLATES[J]. Acta Materiae Compositae Sinica, 1998, 15(4): 74-80.
Citation: Xu Sheng-jin, Song Yu, Wang Ben-li, et al. INVESTIGATION OF DYNAMIC BEHAVIOR OF ORTHOTROPIC HONEYCOMB SANDWICH PLATES[J]. Acta Materiae Compositae Sinica, 1998, 15(4): 74-80.

INVESTIGATION OF DYNAMIC BEHAVIOR OF ORTHOTROPIC HONEYCOMB SANDWICH PLATES

More Information
  • Received Date: May 16, 1997
  • Revised Date: July 27, 1997
  • In this paper, dynamic behavior of orthotropic honeycomb sandwich plates is investigated layer by layer with high order theory of Reddy. Dynamic equations of honeycomb sandwich plates are derived. Free vibration of one dimensional orthotropic honeycomb sandwich plates is investigated deeply. Frequency equations and functions of vibration mode are given when two sides, opposite to each other, are simply supported. How frequency is influenced by thickness of core and ratios of thickness to span is analyzed simultaneously. The results are compared with those of low order theory. The result of comparison proves that high order theory is better than low order theory.
  • Related Articles

    [1]FU Xiao, MEI Zhiyuan, GUO Liqiang, ZHANG Xiaofang. Ultimate bearing capacity contrast test of composite thin-walled shells with variable curvature and cylindrical configuration[J]. Acta Materiae Compositae Sinica.
    [2]ZHU Ruijie, LI Feng, ZHANG Hengming. A model for critical buckling load of thin composite tube based on elastic foundation beam theory[J]. Acta Materiae Compositae Sinica, 2017, 34(8): 1745-1753. DOI: 10.13801/j.cnki.fhclxb.20161124.005
    [3]GE Dongyun, MO Yuming, HE Boling, DU Xuzhen. Test and ultimate load capacity prediction of hat-stiffened composite panel under axial compression[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1531-1539. DOI: 10.13801/j.cnki.fhclxb.20151014.002
    [4]CHEN Yue, ZHU Xi, LI Huadong, ZHU Zixu. Buckling failure mode and ultimate load of composite sandwich beam[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 991-997. DOI: 10.13801/j.cnki.fhclxb.20160121.001
    [5]LI Nian, REN Feixiang, CHEN Puhui, YE Qiang, SUN Yanpeng. An improved GBJM method and its application in bolt load distribution and load capacity analysis of composite structures with bolt group[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 176-181. DOI: 10.13801/j.cnki.fhclxb.20140611.001
    [6]MA Yu, ZHAO Qilin. Analysis of the bonded bolted hybrid composite joints&rsquo|carrying capacity[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 225-230.
    [7]CHENG Wen-yuan, CUI De-gang, GU Zhi-fen, CUI De-yu, WANG Jin. Loading capabil ity of composite multi-spar structures[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 119-123.
    [8]HUANG Zhengming, ZHANG Ruojing. ON THE ULTIMATE STRENGTHOF A FIBER REINFORCED COMPOSITELAMINATE SUBJECTED TO LATERAL LOADS[J]. Acta Materiae Compositae Sinica, 2005, 22(2): 148-159.
    [9]BAI Ruixiang, CHEN Haoran, WANG Man. DYNAMIC LOADING CAPACITY OF STIFFENED DELAMINATED PLATES[J]. Acta Materiae Compositae Sinica, 2005, 22(1): 139-144.
    [10]CHEN Haoran, LIU Yuandong. LOADED CAPABILITY OF DELAMINATED COMPOSITE PLATES UNDER DYNAMIC LOADING[J]. Acta Materiae Compositae Sinica, 2004, 21(3): 115-119.

Catalog

    Article Metrics

    Article views (1464) PDF downloads (891) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return