Volume 40 Issue 8
May  2023
Turn off MathJax
Article Contents
ZENG Yihan, DING Chunxiang, LIN Bingqun, et al. Small angle X-ray scattering in polymers and polymer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4355-4373. doi: 10.13801/j.cnki.fhclxb.20221222.002
Citation: ZENG Yihan, DING Chunxiang, LIN Bingqun, et al. Small angle X-ray scattering in polymers and polymer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4355-4373. doi: 10.13801/j.cnki.fhclxb.20221222.002

Small angle X-ray scattering in polymers and polymer composites

doi: 10.13801/j.cnki.fhclxb.20221222.002
Funds:  National Natural Science Foundation of China (32171704); Natural Science Foundation of Jiangsu Province (BK20201384)
  • Received Date: 2022-03-30
  • Accepted Date: 2022-05-21
  • Rev Recd Date: 2022-05-14
  • Available Online: 2022-12-26
  • Publish Date: 2023-08-15
  • In the synthesis of polymers and polymer composites, it is still a challenge to observe the real-time and dynamic evolution of material structure and provide implications for property prediction. As one of the methods to characterize the microscopic and submicroscopic structures of substances, small angle X-ray Scattering (SAXS) technology can reflect unique microscopic conformational information, and can systematically study the morphological characteristics and formation process of chain-like, network-like, and layered polymers. The analysis of the formation mechanism of the aggregated structure of molecular materials, and their macroscopic performance prediction are very important. In this paper, three common methods for SAXS applications in current polymer materials research were presented, i.e., the peak observation, the model fitting, and the annular integration. Based on the above three methods, this paper introduced the practical functions of SAXS in studying different polymer materials, such as dynamic observation of the microstructural evolution process, and obtaining large-scale and statistically significant microstructural parameters. After comparing and evaluating the application methods and influences of SAXS in different polymer materials, it was concluded that SAXS plays a comprehensive role that is difficult to replicate in the study of complex polymer materials. It was hoped that this paper could serve as a primer to attract researchers' attention to understand SAXS technology, provide alternative research methods for the investigation of complex polymers, and expand the application of SAXS in wider fields to solve more problems.


  • loading
  • [1]
    ZHU Y, ZHENG W, WANG W, et al. When polymerization meets coordination-driven self-assembly: Metallo-supramolecular polymers based on supramolecular coordination complexes[J]. Chemical Society Reviews,2021,50(13):7395-7417. doi: 10.1039/D0CS00654H
    JUNG K, CORRIGAN N, WONG E H H, et al. Bioactive synthetic polymers[J]. Advanced Materials, 2022, 34(2): e2105063.
    WONG C K, QIANG X L, MULLER A H E, et al. Self-assembly of block copolymers into internally ordered microparticles[J]. Progress in Polymer Science,2020,102:101211.
    MEZHUEV Y O, KORSHAK Y V, SHTILMAN M I, et al. Electronic and crystal structures of nitrogen-containing electroconductive and electroactive polymers[J]. Journal of Structural Chemistry,2019,60(4):583-601. doi: 10.1134/S0022476619040097
    ZHU M, LI J, YU J, et al. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin[J]. Angewandte Chemie International Edition,2022,61(22):e202200226.
    ZENG X, WANG Y, HAN J, et al. Fighting against drug-resistant tumors using a dual-responsive Pt(IV)/Ru(II) bimetallic polymer[J]. Advanced Materials, 2020, 32(43): 2004766.
    USSIA M, PUMERA M. Towards micromachine intelligence: Potential of polymers[J]. Chemical Society Reviews,2022,51(5):1558-1572. doi: 10.1039/D1CS00587A
    AGUILA B, SUN Q, PERMAN J A, et al. Efficient mercury capture using functionalized porous organic polymer[J]. Advanced Materials, 2017, 29(31): 1700665.
    CHEN Y, ZHANG Y, LI H, et al. Dynamic circularly polarized luminescence with tunable handedness and intensity enabled by achiral dichroic dyes in cholesteric liquid crystal medium[J]. Advanced Materials, 2022, 34(28): 2202309.
    HUI S Y, HYUNGJU A, SANGSUL L, et al. Universal alignment of graphene oxide in suspensions and fibers[J]. ACS Nano,2021,15(8):13453-13462. doi: 10.1021/acsnano.1c03954
    LI T, ANDREW J S, LEE B. Small angle X-ray scattering for nanoparticle research[J]. Chemical Reviews,2016,116(18):11128-11180. doi: 10.1021/acs.chemrev.5b00690
    NGUYEN V T, NGUYEN V D, HAUG G C, et al. Alkene synthesis by photocatalytic chemoenzymatically compatible dehydrodecarboxylation of carboxylic acids and biomass[J]. ACS Catalysis,2019,9(10):9485-9498. doi: 10.1021/acscatal.9b02951
    吕冬, 卢影, 门永锋. 小角X射线散射技术在高分子表征中的应用[J]. 高分子学报, 2021, 52(7):822-839. doi: 10.11777/j.issn1000-3304.2020.20249

    LYU Dong, LU Ying, MEN Yongfeng. Application of small angle X-ray scattering technique in polymer characterization[J]. Acta Polymerica Sinica,2021,52(7):822-839(in Chinese). doi: 10.11777/j.issn1000-3304.2020.20249
    田宇, 朱才镇, 龚静华, 等. 纤维结构形态的原位同步辐射X射线散射及衍射研究[J]. 化学进展, 2013, 25(10):1751-1762. doi: 10.7536/PC130135

    TIAN Yu, ZHU Caizhen, GONG Jinghua, et al. In situ synchrotron radiation X-ray scattering and diffraction measurement studies on structure and morphology of fibers[J]. Progress in Chemistry,2013,25(10):1751-1762(in Chinese). doi: 10.7536/PC130135
    乔治, 陈刚. 同步辐射原位X射线散射技术在纳米与能源材料中的应用[J]. 中国材料进展, 2021, 40(2):105-111.

    QIAO Zhi, CHEN Gang. Application of synchrotron radiation in-situ X-ray scattering technology in nano and energy materials research[J]. Materials China,2021,40(2):105-111(in Chinese).
    朱育平. 小角X射线散射—理论、测试、计算及应用[M]. 北京: 化学工业出版社, 2008.

    ZHU Yuping. Small angle X-ray scattering—Theory, testing, calculation and application[M]. Beijing: Chemical Industry Press, 2008(in Chinese).
    MARIANNE L, MARIOS G, ANDREAS M, et al. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography[J]. Nature,2015,527(7578):349-353. doi: 10.1038/nature16056
    THOMAS Z, MATHEW R S, SÖNKE S, et al. Absolute intramolecular distance measurements with angstrom-resolution using anomalous small-angle X-ray scattering[J]. Nano Letters,2016,16(9):1-5.
    FANG L, SOENKE S, WINANS R E, et al. Understanding synthesis and structural variation of nanomaterials through in situ/operando XAS and SAXS[J]. Small (Weinheim an der Bergstrasse, Germany),2022,18(19):e2106017.
    VENDITTI V, EGNER T K, CLORE G M. Hybrid approaches to structural characterization of conformational ensembles of complex macromolecular systems combining NMR residual dipolar couplings and solution X-ray scattering[J]. Chemical Reviews, 2016, 116(11): 6305-6322.
    WANG X, WU L, WANG G, et al. Dynamic crystallization and phase transition in evaporating colloidal droplets[J]. Nano Letters,2019,19(11):8225-8233. doi: 10.1021/acs.nanolett.9b03633
    LIAM P D R, DERRY M J, ALESSANDRO I, et al. A single thermoresponsive diblock copolymer can form spheres, worms or vesicles in aqueous solution[J]. Angewandte Chemie International Edition,2019,131(52):18964-18970.
    LYU X L, TANG Z H, XIAO A Q, et al. Temperature-controlled formation of inverse mesophases assembled from a rod-coil block copolymer[J]. Polymer Chemistry,2019,10(44):6031-6036. doi: 10.1039/C9PY01257E
    朱才镇, 刘小芳, 马敬红, 等. 取向体系的二维小角X射线散射分析理论研究进展[J]. 高分子通报, 2013(10): 7-11.

    ZHU Caizhen, LIU Xiaofang, MA Jinghong, et al. An overview of theoretical analysis for orientation systems based on two-dimensional small angle scattering of X-ray[J]. Chinese Polymer Bulletin, 2013(10): 7-11(in Chinese).
    HOU J, BADRI A, JOHN J T, et al. Saxsdom: Modeling multidomain protein structures using small-angle X-ray scattering data[J]. Proteins,2020,88(6):1-13.
    杨春明, 洪春霞, 周平, 等. 同步辐射小角X射线散射及其在材料研究中的应用[J]. 中国材料进展, 2021, 40(2):111-119. doi: 10.7502/j.issn.1674-3962.202009018

    YANG Chunming, HONG Chunxia, ZHOU Ping, et al. Synchrotron radiation small angle X-ray scattering in materials research[J]. Materials China,2021,40(2):111-119(in Chinese). doi: 10.7502/j.issn.1674-3962.202009018
    李登华, 吕春祥, 杨禹, 等. 碳纤维微观结构表征: 小角X射线散射[J]. 材料导报, 2021, 35(7):7077-7086. doi: 10.11896/cldb.19070264

    LI Denghua, LYU Chunxiang, YANG Yu, et al. Characterization of the microstructure of carbon fibers: Small angle X-ray scattering[J]. Materials Reports,2021,35(7):7077-7086(in Chinese). doi: 10.11896/cldb.19070264
    田恐虎, 吴阳, 盛绍顶, 等. 聚合物基绝缘导热复合材料中碳系填料的研究进展[J]. 复合材料学报, 2021, 38(4):1054-1065. doi: 10.13801/j.cnki.fhclxb.20201224.001

    TIAN Konghu, WU Yang, SHENG Shaoding, et al. Research progress of carbon-based fillers in polymer matrix insulating and thermally conductive composites[J]. Acta Materiae Compositae Sinica,2021,38(4):1054-1065(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201224.001
    LUDESCHER L, MORAK R, BRAXMEIER S, et al. Hierarchically organized materials with ordered mesopores: Adsorption isotherm and adsorption-induced deformation from small-angle scattering[J]. Physical Chemistry Chemical Physics,2020,22(22):12713-12723. doi: 10.1039/D0CP01026J
    NAGINI M, PRADEEP K G, VIJAY R, et al. A combined electron microscopy, atom probe tomography and small angle X-ray scattering study of oxide dispersion strengthened 18 CR ferritic steel[J]. Materials Characterization,2020,164:1-9.
    海洋, 柳义, 陈西良, 等. 小角X射线散射法测定高密度聚乙烯微观结构随温度的变化[J]. 高分子材料科学与工程, 2015, 31(9):117-121. doi: 10.16865/j.cnki.1000-7555.2015.09.023

    HAI Yang, LIU Yi, CHEN Xiliang, et al. Determination of microstructures of high-density polyethylene with temperature by small angle X-ray scattering method[J]. Polymer Materials Science and Engineerig,2015,31(9):117-121(in Chinese). doi: 10.16865/j.cnki.1000-7555.2015.09.023
    LI H, KRUTEVA M, DULLE M, et al. Understanding the drying behavior of regenerated cellulose gel beads: The effects of concentration and nonsolvents[J]. ACS Nano,2022,16(2):2608-2620. doi: 10.1021/acsnano.1c09338
    YANG J, SATO T. Conformation of pullulan in aqueous solution studied by small-angle X-ray scattering[J]. Polymers,2020,12(6):1-11.
    CANDIA C F, STROM A, GÓMEZ-MASCARAQUE L G, et al. Understanding nanostructural differences in hydrogels from commercial carrageenans: Combined small angle X-ray scattering and rheological studies[J]. Algal Research,2020,47:1-14.
    RAHMAN T, PETRUS E, SEGADO M, et al. Predicting the solubility of inorganic ions pairs in water[J]. Angewandte Chemie International Edition,2022,61(19):e202117839.
    武海娟, 翟红生, 杨春明, 等. 小角X射线散射法研究枣树的微孔结构[J]. 光散射学报, 2020, 32(4):328-334. doi: 10.13883/j.issn1004-5929.202004006

    WU Haijuan, QU Hongsheng, YANG Chunming, et al. SAXS study on the micropore structure of jujube[J]. The Journal of Light Scattering,2020,32(4):328-334(in Chinese). doi: 10.13883/j.issn1004-5929.202004006
    RAHMANIAN V, GALESKI A. Cavitation in strained polyethylene/nanographene nanocomposites[J]. Polymer,2021,232(6):124158.
    CHEN R, LU Y, JIANG Z Y, et al. Cavitation in poly(4-methyl-1-pentene) during tensile deformation[J]. Journal of Physical Chemistry B,2018,122(14):4159-4168. doi: 10.1021/acs.jpcb.8b00060
    ZHANG C, LIU G, SONG Y, et al. Structural evolution of beta-IPP during uniaxial stretching studied by in-situ WAXS and SAXS[J]. Polymer,2014,55(26):6915-6923. doi: 10.1016/j.polymer.2014.10.049
    LANASA J A, NEUMAN A, RIGGLEMAN R A, et al. Investi-gating nanoparticle organization in polymer matrices during reaction-induced phase transitions and material processing[J]. ACS Applied Materials & Interfaces,2021,13(35):42104-42113.
    MARTINS I C B, AL-SABBAGH D, BENTRUP U, et al. Formation mechanism of a nano-ring of bismuth cations and mono-lacunary Keggin-type phosphomolybdate[J]. Chemistry-A European Journal,2022,28(27):1-6.
    ANKER A S, CHRISTIANSEN T L, WEBER M, et al. Structural changes during the growth of atomically precise metal oxido nanoclusters from combined pair distribution function and small-angle X-ray scattering analysis[J]. Angewandte Chemie International Edition,2021,60(37):20407-20416. doi: 10.1002/anie.202103641
    FANG L, SEIFERT S, WINANS R E, et al. Understanding synthesis and structural variation of nanomaterials through in situ/operando XAS and SAXS[J]. Small,2022,18(19):1-12.
    YANG Y, ROH I, LOUISIA S, et al. Operando resonant soft X-ray scattering studies of chemical environment and interparticle dynamics of Cu nanocatalysts for CO2 electroreduction[J]. Journal of the American Chemical Society,2022,144(20):8927-8931. doi: 10.1021/jacs.2c03662
    CHEN Q, YAO Y, LIAO J, et al. Subnanometer ion channel anion exchange membranes having a rigid benzimidazole structure for selective anion separation[J]. ACS Nano,2022,16(3):4629-4641. doi: 10.1021/acsnano.1c11264
    OH E J, PARK D G, LIM Y S, et al. Structural transition of reverse cylindrical micelles to reverse vesicles by mixtures of lecithin and inorganic salts[J]. Journal of Colloid and Interface Science,2022,615:768-777. doi: 10.1016/j.jcis.2022.02.015
    ROYES J, BJORNESTAD V A, BRUN G, et al. Transition kinetics of mixed lipid: Photosurfactant assemblies studied by time-resolved small angle X-ray scattering[J]. Journal of Colloid and Interface Science,2022,610:830-841. doi: 10.1016/j.jcis.2021.11.133
    KANG M, TUTEJA M, CENTRONE A, et al. Nanostructured lipid-based films for substrate mediated applications in biotechnology[J]. Advanced Functional Materials,2018,28:1-20.
    CASTELLANA E T, CREMER P S. Solid supported lipid bilayers: From biophysical studies to sensor design[J]. Surface Science Reports,2006,61(10):429-444. doi: 10.1016/j.surfrep.2006.06.001
    HERRERA D, CHEVALIER T, FROT D, et al. Monitoring the formation kinetics of a bicontinuous microemulsion[J]. Journal of Colloid and Interface Science,2022,609:200-211. doi: 10.1016/j.jcis.2021.12.011
    WU H, TING J M, WEISS T M, et al. Interparticle interactions in dilute solutions of polyelectrolyte complex micelles[J]. ACS Macro Letters,2019,8(7):819-825. doi: 10.1021/acsmacrolett.9b00226
    CZAJKA A, ARMES S P. Time-resolved small-angle X-ray scattering studies during aqueous emulsion polymerization[J]. Journal of the American Chemical Society,2021,143(3):1474-1484. doi: 10.1021/jacs.0c11183
    ELIFKÜBRA Ö, FELIX B, PASCAL C, et al. Peering into the formation of cerium oxide colloidal particles in solution by in-situ small-angle X-ray scattering[J]. Langmuir,2020,36(31):9175-9190. doi: 10.1021/acs.langmuir.0c01463
    DORDOVIC V, UCHMAN M, ZHIGUNOV A, et al. Compartmentalization in hybrid metallacarborane nanoparticles formed by block copolymers with star-like architecture[J]. ACS Macro Letters,2014,3(11):1151-1155. doi: 10.1021/mz5004757
    HANCOX E, DERRY M J, GREENALL M J, et al. Heterotelechelic homopolymers mimicking high CHI- ultralow n block copolymers with sub-2 nm domain size[J]. Chemical Science,2022,13(14):4019-4028. doi: 10.1039/D2SC00720G
    ANDREOZZI P, SIMO C, MORETTI P, et al. Novel core-shell polyamine phosphate nanoparticles self-assembled from pegylated poly(allylamine hydrochloride) with low toxicity and increased in vivo circulation time[J]. Small,2021,17(35):1-10.
    KARAVOLIAS M G, ELDER J B, NESS E M, et al. Order-to-disorder transitions in lamellar melt self-assembled core-shell bottlebrush polymers[J]. ACS Macro Letters,2019,8(12):1617-1622. doi: 10.1021/acsmacrolett.9b00782
    PARK J, NAM J, SEO M, et al. Side-chain density driven morphology transition in brush-linear diblock copolymers[J]. ACS Macro Letters,2022,11(4):468-474. doi: 10.1021/acsmacrolett.2c00068
    KIM S, CHO Y, KIM J H, et al. Structural analysis of bottle brush block copolymer micelles using small-angle X-ray scattering[J]. ACS Macro Letters,2020,9(9):1261-1266. doi: 10.1021/acsmacrolett.0c00442
    RAPHAEL E, DERRY M J, HIPPLER M, et al. Tuning the properties of hydrogen-bonded block copolymer worm gels prepared via polymerization-induced self-assembly[J]. Chemical Science,2021,12(36):12082-12091. doi: 10.1039/D1SC03156B
    BROTHERTON E E, HATTON F L, COCKRAM A A, et al. In situ small-angle X-ray scattering studies during reversible addition-fragmentation chain transfer aqueous emulsion polymerization[J]. Journal of the American Chemical Society,2019,141(34):13664-13675. doi: 10.1021/jacs.9b06788
    BO F, JING W, JIALI Z, et al. Triggered degradable colloidal particles with ordered inverse bicontinuous cubic and hexagonal mesophases[J]. ACS Nano,2021,15(3):4688-4698. doi: 10.1021/acsnano.0c09166
    CZAJKA A, ARMES S P. In situ SAXS studies of a prototypical raft aqueous dispersion polymerization formulation: Monitoring the evolution in copolymer morphology during polymerization-induced self-assembly[J]. Chemical Science,2020,11(42):11443-11454. doi: 10.1039/D0SC03411H
    QIU X, WANG X, HE Y, et al. Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries[J]. Science Advances,2021,7(37):1-10.
    MALIN W, TOBIAS B, LARS W, et al. Cellulose and the role of hydrogen bonds: Not in charge of everything[J]. Cellulose,2022,29(1):1-23. doi: 10.1007/s10570-021-04325-4
    TOMAS R, HE H, WANG R, et al. Cross-sections of nanocellulose from wood analyzed by quantized polydispersity of elementary microfibrils[J]. ACS Nano,2020,14(12):16743-16754.
    SUZUKI M, ORIDO T, TAKANO A, et al. The largest quasicrystalline tiling with dodecagonal symmetry from a single pentablock quarterpolymer of the AB1 CB2 D type[J]. ACS Nano,2022,16(4):6111-6117.
    JANAS K, ŁATKIEWICZ A, PARNELL A, et al. Differential effects of early growth conditions on colour-producing nanostructures revealed through small angle X-ray scattering (SAXS) and electron microscopy[J]. The Journal of Experimental Biology,2020,223:228387.
    ZHOU L, KOH J J, HOU X, et al. Crystallization of decanoic acid/dopamine supramolecular self-assemblies in the presence of coacervates[J]. Journal of Colloid and Interface Science,2022,615:759-767. doi: 10.1016/j.jcis.2022.02.016
    GAO Y, ZHOU Y, XU X, et al. Fabrication of oriented colloidal crystals from capillary assembly of polymer-tethered gold nanoparticles[J]. Small,2022,18(13):1-9.
    LIU C, TANG X, WANG Y, et al. Ionic conductivity enhancement of polymer electrolytes by directed crystallization[J]. ACS Macro Letters,2022,11(4):595-602. doi: 10.1021/acsmacrolett.2c00040
    ZHU Y, ZENG S, LI B, et al. Liquid-crystalline thermally activated delayed fluorescence: Design, synthesis, and application in solution-processed organic light-emitting diodes[J]. ACS Applied Materials & Interfaces,2022,14(13):15437-15447.
    KONISHI T, OKAMOTO D, TADOKORO D, et al. Kinetics of polymer crystallization with aggregating small crystallites[J]. Physical Review Letters, 2022, 128(10): 107801.
    DONG K, PENG X, WANG Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence[J]. Advanced Materials,2020,32(5):1-43.
    胡涛, 滑文强, 王玉丹, 等. 基于Kirkpatrick-Baez镜聚焦的X射线小角散射显微层析成像[J]. 光学学报, 2018, 38(1):392-398.

    HU Tao, HUA Wenqiang, WANG Yudan, et al. Samll-angle X-ray scattering tomography based on micro-focusing Kirkpatrick-Baez mirrors[J]. Acta Optica Sinica,2018,38(1):392-398(in Chinese).
    LUTZ-BUENO V, DIAZ A, WU T, et al. Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering[J]. Biomacromolecules,2022,23(3):676-686. doi: 10.1021/acs.biomac.1c00521
    KUMAR R K, MISHCHENKO A, CHEN X, et al. High-order fractal states in graphene superlattices[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(20):5135-5139. doi: 10.1073/pnas.1804572115
    XIAO Y X, YING J, TIAN G, et al. Hierarchically fractal PTPDCU sponges and their directed mass- and electron-transfer effects[J]. Nano Letters,2021,21(18):7870-7878. doi: 10.1021/acs.nanolett.1c02268
    王春红, 赵玲, 李姗. 利用小角X射线散射技术研究改性处理对苎麻/热固性聚乳酸复合材料界面特性和分形特征的影响[J]. 天津工业大学学报, 2014, 33(6):21-24. doi: 10.3969/j.issn.1671-024X.2014.06.005

    WANG Chunhong, ZHAO Lin, LI Shan. Influence of modification on interface and fractal characteristics of ramie/PLA composites by SAXS[J]. Journal of Tianjin Polytechnic University,2014,33(6):21-24(in Chinese). doi: 10.3969/j.issn.1671-024X.2014.06.005
    MAI H, LE T C, CHEN D, et al. Machine learning for electrocatalyst and photocatalyst design and discovery[J]. Chemical Reviews, 2022, 122(16): 13478-13515.
    岑为, 夏先知, 刘月祥, 等. 基于小角X射线散射聚烯烃催化剂三维模型重构[J]. 高分子通报, 2014(11):83-89. doi: 10.14028/j.cnki.1003-3726.2014.11.011

    CEN Wei, XIA Xianzhi, LIU Yuexiang, et al. Reconstruction of polyolefin catalyst 3D model based on small angle X-ray scattering[J]. Polymer Bulletin,2014(11):83-89(in Chinese). doi: 10.14028/j.cnki.1003-3726.2014.11.011
    MICHELSEN H A, CAMPBELL M F, TRAN I C, et al. Distinguishing gas-phase and nanoparticle contributions to small-angle X-ray scattering in reacting aerosol flows[J]. The Journal of Physical Chemistry A,2022,126(19):3015-3026. doi: 10.1021/acs.jpca.2c00454
    YANG W, SHINYA Y, KEIICHIRO S, et al. Perovskite nanosheet hydrogels with mechanochromic structural color[J]. Angewandte Chemie International Edition,2021,60(15):8466-8471. doi: 10.1002/anie.202015982
    付莲莲, 卢影, 姜志勇, 等. 基于同步辐射超小角X射线散射的高密度聚乙烯空洞化行为研究[J]. 高分子学报, 2021, 52(2):204-213. doi: 10.11777/j.issn1000-3304.2020.20147

    FU Lianlian, LU Ying, JIANG Zhiyong, et al. Cavitation behavior of high-density polyethylene based on ultra-small angle X-ray scattering by synchrotron radiation[J]. Acta Polymerica Sinica,2021,52(2):204-213(in Chinese). doi: 10.11777/j.issn1000-3304.2020.20147
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1633) PDF downloads(207) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint