Volume 38 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
JIN Fan, LV Dawu, ZHANG Tiancheng, et al. Design, fabrication and performance of flexible pressure sensors based on microstructures[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3133-3150. doi: 10.13801/j.cnki.fhclxb.20210520.004
Citation: JIN Fan, LV Dawu, ZHANG Tiancheng, et al. Design, fabrication and performance of flexible pressure sensors based on microstructures[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3133-3150. doi: 10.13801/j.cnki.fhclxb.20210520.004

Design, fabrication and performance of flexible pressure sensors based on microstructures

doi: 10.13801/j.cnki.fhclxb.20210520.004
  • Received Date: 2021-03-19
  • Accepted Date: 2021-05-14
  • Available Online: 2021-05-21
  • Publish Date: 2021-10-01
  • With the rapid development of science and technology, electronic skin and flexible wearable devices have attracted wide attention because of their important applications in human motion, health monitoring, intelligent robots and other fields. The traditional pressure sensors based on noble metal or metal oxide semiconductor have high cost or poor flexibility, while the flexible pressure sensors based on microstructures have the advantages of high sensitivity, wide strain range, low cost, low power consumption and fast response, which play an important role in electronic skin and flexible wearable devices and have become one of the main research hotspots of materials and devices in flexible electronics. This review systematically summarizes the important progress made in the material selection, structural design, preparation methods and sensing performance of flexible pressure sensors based on different flexible substrate microstructures such as pyramid, microsphere, micro-column, bionic structure and fold and porous conductive polymer materials. Finally, the future development of flexible pressure sensors is prospected.

     

  • loading
  • [1]
    ZANG Y P, ZHANG F J, DI C, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons,2015,2(2):140-156.
    [2]
    ZHOU H W, WANG Z W, ZHAO W F, et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers[J]. Chemical Engineering Journal,2021,403:126307. doi: 10.1016/j.cej.2020.126307
    [3]
    LIU Z, MA Y, OUYANG H, et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor[J]. Advanced Functional Materials,2019,29:1807560. doi: 10.1002/adfm.201807560
    [4]
    OUYANG H, LIU Z, LI N, et al. Symbiotic cardiac pacemaker[J]. Nature communications,2019,10:1821. doi: 10.1038/s41467-019-09851-1
    [5]
    CHENG X L, XUE X, MA Y, et al. Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies[J]. Nano Energy,2016,22:453-460. doi: 10.1016/j.nanoen.2016.02.037
    [6]
    SHARMA S, CHHETRY A, SHARIFUZZAMAN M, et al. Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition[J]. ACS Applied Materials & Interfaces,2020,12(19):22212-22224.
    [7]
    GUAN X, WANG Z Y, ZHAO W Y, et al. Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture[J]. ACS Applied Materials & Interfaces,2020,12(23):26137-26144.
    [8]
    JIANG D J, SHI B J, OUYANG H, et al. Emerging implantable energy harvesters and self-powered implantable medical electronics[J]. ACS Nano,2020,14:6436-6448. doi: 10.1021/acsnano.9b08268
    [9]
    WANG Y L, ZHU W, YU Y D, et al. High-sensitivity flexible pressure sensor with low working voltage based on sphenoid microstructure[J]. IEEE Sensors Journal,2020,20(13):7354-7361. doi: 10.1109/JSEN.2020.2978655
    [10]
    ZHAO L M, LI H, MENG J P, et al. The recent advances in self-powered medical information sensors[J]. InfoMat,2020,2:212-234. doi: 10.1002/inf2.12064
    [11]
    MENG J P, LI Z. Schottky-contacted nanowire sensors[J]. Advanced Materials,2020,32:2000130. doi: 10.1002/adma.202000130
    [12]
    ZHENG Q, TANG Q Z, WANG Z L, et al. Self-powered cardiovascular electronic devices and systems[J]. Nature Reviews Cardiology,2020,18:7-21.
    [13]
    WANG Z, CHEN J, CONG Y, et al. Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels[J]. Chemistry of Materials,2018,30(21):8062-8069. doi: 10.1021/acs.chemmater.8b03999
    [14]
    LIU M M, PU X, JIANG C Y, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals[J]. Advanced Materials,2017,29(41):1703700. doi: 10.1002/adma.201703700
    [15]
    LIU P, LIU J, ZHU X, et al. A highly adhesive flexible strain sensor based on ultra-violet adhesive filled by graphene and carbon black for wearable monitoring[J]. Composites Science and Technology,2019,182:107771. doi: 10.1016/j.compscitech.2019.107771
    [16]
    GUO Y, ZHONG M, FANG Z, et al. A wearable transient pressure sensor made with mxene nanosheets for sensitive broad-range human-machine interfacing[J]. Nano Letters,2019,19(2):1143-1150. doi: 10.1021/acs.nanolett.8b04514
    [17]
    WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials,2014,26(9):1336-1342. doi: 10.1002/adma.201304248
    [18]
    HAN M, LEE J, KIM J K, et al. Highly sensitive and flexible wearable pressure sensor with dielectric elastomer and carbon nanotube electrodes[J]. Sensors and Actuators A: Physical,2020,305:111941. doi: 10.1016/j.sna.2020.111941
    [19]
    CHEN W F, YAN X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review[J]. Journal of Materials Science & Technology,2020,43:175-188.
    [20]
    BAE G Y, HAN J T, LEE G, et al. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity[J]. Advanced Materials,2018,30(43):1803388. doi: 10.1002/adma.201803388
    [21]
    CHOI H B, OH J, KIM Y, et al. Transparent pressure sensor with high linearity over a wide pressure range for 3d touch screen applications[J]. ACS Applied Materials & Interfaces,2020,12(14):16691-16699.
    [22]
    SHI R L, LOU Z, CHEN S, et al. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application[J]. Science China Materials,2018,61(12):1587-1595. doi: 10.1007/s40843-018-9267-3
    [23]
    LIU H, LI Q, ZHANG S, et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review[J]. Journal of Materials Chemistry C,2018,6(45):12121-12141. doi: 10.1039/C8TC04079F
    [24]
    WU S, PENG S, HAN Z J, et al. Ultrasensitive and stretchable strain sensors based on mazelike vertical graphene network[J]. ACS Applied Materials & Interfaces,2018,10(42):36312-36322. doi: 10.1021/acsami.8b15848
    [25]
    ZHAO T, LI T, CHEN L, et al. Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials[J]. ACS Applied Materials & Interfaces,2019,11(32):29466-29473.
    [26]
    HAMMOCK M L, CHORTOS A, TEE B C, et al. C, et al. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress[J]. Advanced Materials,2013,25(42):5997-6038. doi: 10.1002/adma.201302240
    [27]
    ZHU Y C, WU Y G, WANG G S, et al. A flexible capacitive pressure sensor based on an electrospun polyimide nano-fiber membrane[J]. Organic Electronics,2020,84:105759. doi: 10.1016/j.orgel.2020.105759
    [28]
    LIU H, HUANG W J, YANG X R, et al. Organic vapor sensing behaviors of conductive thermoplastic polyurethane-graphene nanocomposites[J]. Journal of Materials Chemistry C,2016,4(20):4459-4469. doi: 10.1039/C6TC00987E
    [29]
    LIU H, DONG M Y, HUANG, W J, et al. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing[J]. Journal of Materials Chemistry C,2017,5(1):73-83. doi: 10.1039/C6TC03713E
    [30]
    LIU H, LI Y L, DAI K, et al. Electrically conductive thermoplastic elastomer nanocmposites at ultralow graphene loading levels for strain sensor applications[J]. Journal of Materials Chemistry C,2016,4(1):157-166.
    [31]
    SEYEDIN M Z, RAZAL J M, INNIS P C, et al. Strain-responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity[J]. Advanced Functional Materials,2014,24(20):2957-2966. doi: 10.1002/adfm.201303905
    [32]
    LI M, LI H, ZHONG W, et al. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection[J]. ACS Applied Materials & Interfaces,2014,6(2):1313-1319.
    [33]
    TRAN M T, TUNG T T, SACHAN A, et al. 3D sprayed polyurethane functionalized graphene/carbon nanotubes hybrid architectures to enhance the piezoresistive response of quantum resistive pressure sensors[J]. Carbon,2020,168:564-579. doi: 10.1016/j.carbon.2020.05.086
    [34]
    LIN Y, LIU S Q, CHEN S, et al. A highly stretchable and sensitive strain sensor based on graphene-elastomer composites with a novel double-interconnected network[J]. Journal of Materials Chemistry C,2016,4(26):6345-6352. doi: 10.1039/C6TC01925K
    [35]
    ZHAO S F, LI J H, CAO D X, et al. Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics[J]. Journal of Materials Chemistry C,2016,4(27):6666-6674. doi: 10.1039/C6TC01728B
    [36]
    WANG Y L, JIA Y Y, ZHOU Y J, et al. Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands[J]. Journal of Materials Chemistry C,2018,6(30):8160-8170. doi: 10.1039/C8TC02702A
    [37]
    HUANG J, YANG X, LIU J, et al. Vibration monitoring based on flexible multi-walled carbon nanotube/polydimethylsiloxane film sensor and the application on motion signal acquisition[J]. Nanotechnology,2020,31(33):335504. doi: 10.1088/1361-6528/ab8edd
    [38]
    JEONG S H, ZHANG S, HJORT K, et al. PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics[J]. Advanced Materials,2016,28(28):5830-5836. doi: 10.1002/adma.201505372
    [39]
    CUI J, ZHANG B, DUAN J, et al. Flexible pressure sensor with Ag wrinkled electrodes based on PDMS substrate[J]. Sensors,2016,16(12):2131. doi: 10.3390/s16122131
    [40]
    CHOI T Y, HWANG B U, KIM B Y, et al. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes[J]. ACS Applied Materials Interfaces,2017,9(21):18022-18030. doi: 10.1021/acsami.6b16716
    [41]
    RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. ACS Nano,2015,9(6):5929-5936. doi: 10.1021/acsnano.5b00599
    [42]
    AMJADI M, YOON Y J, PARK I, et al. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites[J]. Nanotechnology,2015,26(37):375501. doi: 10.1088/0957-4484/26/37/375501
    [43]
    ZHANG M C, WANG C Y, WANG H M, et al. Carbonized cotton fabric for high-performance wearable strain sensors[J]. Advanced Functional Materials,2017,27(2):1604795. doi: 10.1002/adfm.201604795
    [44]
    LEE J, PYO S, KWON D S, et al. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes[J]. Small,2019,15(12):1805120. doi: 10.1002/smll.201805120
    [45]
    JIANG Y, HE Q, CAI J, et al. Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films[J]. ACS Applied Materials & Interfaces,2020,12(52):58317-58325.
    [46]
    SEKITANI T, ZSCHIESCHANG U, KLAUK H, et al. Flexible organic transistors and circuits with extreme bending stability[J]. Nature Materials,2010,9(12):1015-1022. doi: 10.1038/nmat2896
    [47]
    ROH E, HWANG B U, KIM D, et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers[J]. ACS Nano,2015,9(6):6252-6261. doi: 10.1021/acsnano.5b01613
    [48]
    CHUN S, SON W, CHOI C. Flexible pressure sensors using highly-oriented and free-standing carbon nanotube sheets[J]. Carbon,2018,139:586-592. doi: 10.1016/j.carbon.2018.07.005
    [49]
    LU N S, LU C, YANG S X, et al. Highly sensitive skin-mountable strain gauges based entirely on elastomers[J]. Advanced Functional Materials,2012,22(19):4044-4050. doi: 10.1002/adfm.201200498
    [50]
    CHEN H Y, BAO S J, MA J H, et al. A wearable daily respiration monitoring system using pdms-graphene compound tensile sensor for adult[C]. IEEE, 2019: 1269-1273.
    [51]
    HUANG J, WANG J, YANG Z, et al. High-performance graphene sponges reinforced with polyimide for room-temperature piezoresistive sensing[J]. ACS Applied Materials & Interfaces,2018,10(9):8180-8189.
    [52]
    IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58. doi: 10.1038/354056a0
    [53]
    IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993,363:603-605. doi: 10.1038/363603a0
    [54]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-670.
    [55]
    WANG B, LEE B K, KWAK M J, et al. Graphene/polydimethylsiloxane nanocomposite strain sensor[J]. Review of Scientific Instruments,2013,84(10):105005. doi: 10.1063/1.4826496
    [56]
    YAO H B, GE J, WANG C F, et al. A flexible and highly pressure-sensitive graphene- polyurethane sponge based on fractured microstructure design[J]. Advanced Materials,2013,25(46):6692-6698. doi: 10.1002/adma.201303041
    [57]
    LI X S, CAI W W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324:1312-1314. doi: 10.1126/science.1171245
    [58]
    HASS J, DE HEER W A, CONRAD E H. The growth and morphology of epitaxial multilayer graphene[J]. Journal of Physics: Condensed Matter,2008,20(32):323202. doi: 10.1088/0953-8984/20/32/323202
    [59]
    WENG M, SUN L, QU S, et al. Fingerprint-inspired graphene pressure sensor with wrinkled structure[J]. Extreme Mechanics Letters,2020,37:100714. doi: 10.1016/j.eml.2020.100714
    [60]
    TAO L Q, ZHANG K N, TIAN H, et al. Graphene-paper pressure sensor for detecting human motions[J]. ACS Nano,2017,11(9):8790-8795. doi: 10.1021/acsnano.7b02826
    [61]
    YAO D H, WU L L, PENG S G, et al. Use of surface penetration technology to fabricate superhydrophobic multifunctional strain sensors with an ultrawide sensing range[J]. ACS Applied Materials & Interfaces,2021,13(9):11284-11295.
    [62]
    BAI S, SUN C, WAN P, et al. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors[J]. Small,2015,11(3):306-310. doi: 10.1002/smll.201401865
    [63]
    ZHAO S F, RAN W H, WANG D P, et al. 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics[J]. ACS Applied Materials & Interfaces,2020,12(28):32023-32030.
    [64]
    ZHAO X, WANG W L, WANG Z, et al. Flexible PEDOT:PSS/polyimide aerogels with linearly responsive and stable properties for piezoresistive sensor applications[J]. Chemical Engineering Journal,2020,395:125115. doi: 10.1016/j.cej.2020.125115
    [65]
    BHATTACHARJEE M, SONI M, ESCOBEDO P, et al. PEDOT:PSS microchannel-based highly sensitive stretchable strain sensor[J]. Advanced Electronic Materials,2020,6(8):2000445. doi: 10.1002/aelm.202000445
    [66]
    ZHOU Z, ZHANG X, WU X, et al. Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application[J]. Composites Science and Technology,2016,125:1-8. doi: 10.1016/j.compscitech.2016.01.016
    [67]
    TIAN M W, WANG Y J, QU L J, et al. Electromechanical deformation sensors based on polyurethane/polyaniline electrospinning nanofibrous mats[J]. Synthetic Metals,2016,219:11-19. doi: 10.1016/j.synthmet.2016.05.005
    [68]
    HE W N, LI G Y, ZHANG S Q, et al. Polypyrrole/silver coaxial nanowire aero-sponges for temperatureindependent stress sensing and stress-triggered joule heating[J]. ACS Nano,2015,9(4):4244-4251. doi: 10.1021/acsnano.5b00626
    [69]
    WANG X Y, FENG G Y, LI M J, et al. Effect of PEDOT: PSS content on structure and properties of PEDOT: PSS/poly(vinyl alcohol) composite fiber[J]. Polymer Bulletin,2018,76(4):2097-2111.
    [70]
    WANG C, HU K, ZHAO C C, et al. Customization of conductive elastomer based on PVA/PEI for stretchable sensors[J]. Small,2020,16:1904758. doi: 10.1002/smll.201904758
    [71]
    YUK H, LU B Y, ZHAO X H. Hydrogel bioelectronics[J]. Chemical Society Reviews,2019,48(6):1642-1667. doi: 10.1039/C8CS00595H
    [72]
    MERINO S, MARTIN C, KOSTARELOS K, et al. Nanocomposite hydrogels: 3D polymer- nanoparticle synergies for On-Demand drug delivery[J]. ACS Nano,2015,9(5):4686-4697. doi: 10.1021/acsnano.5b01433
    [73]
    VASHIST A, VASHIST A, GUPTA Y K, et al. Recent advances in hydrogel based drug delivery systems for the human body[J]. Journal of Materials Chemistry B,2014,2:147-166. doi: 10.1039/C3TB21016B
    [74]
    SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications[J]. Science,2012,336:1124-1128. doi: 10.1126/science.1214804
    [75]
    SHI L, ZHU T X, GAO G X, et al. Highly stretchable and transparent ionic conducting elastomers[J]. Nature Communications,2018,9:2630. doi: 10.1038/s41467-018-05165-w
    [76]
    TONDERA C, AKBAR T F, THOMAS A K, et al. Highly conductive, stretchable, and cell-adhesive hydrogel by nanoclay doping[J]. Small,2019,15:1901406. doi: 10.1002/smll.201901406
    [77]
    WANG J, LIN Y K, MOHAMED A, et al. High strength and flexible aramid nanofiber conductive hydrogels for wearable strain sensors[J]. Journal of Materials Chemistry C,2021,9:575-583.
    [78]
    HUANG Z L, GAO M, YAN Z C, et al. Pyramid microstructure with single walled carbon nanotubes for flexible and transparent micro-pressure sensor with ultra-high sensitivity[J]. Sensors and Actuators A: Physical,2017,266:345-351. doi: 10.1016/j.sna.2017.09.054
    [79]
    SHAO Q, NIU Z, HIRTZ M, et al. High-performance and tailorable pressure sensor based on ultrathin conductive polymer film[J]. Small,2014,10(8):1466-1472. doi: 10.1002/smll.201303601
    [80]
    ZHANG X Y, HU Y G, GU H, et al. A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics[J]. Advanced Materials Technologies,2019,4(9):1900367. doi: 10.1002/admt.201900367
    [81]
    ZHANG Y, HU Y, ZHU P, et al. Flexible and highly sensitive pressure sensor based on microdome-patterned pdms forming with assistance of colloid self-assembly and replica technique for wearable electronics[J]. ACS Applied Materials & Interfaces,2017,9(41):35968-35976.
    [82]
    SHI J, WANG L, DAI Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J]. Small,2018,14(27):1800819. doi: 10.1002/smll.201800819
    [83]
    WAN Y, QIU Z, HUANG J, et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin[J]. Small,2018,14(35):1801657. doi: 10.1002/smll.201801657
    [84]
    SU B, GONG S, MA Z, et al. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity[J]. Small,2015,11(16):1886-1891. doi: 10.1002/smll.201403036
    [85]
    YAN J F, MA Y N, LI X X, et al. Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure[J]. Ceramics International,2020,46(15):23592-23598. doi: 10.1016/j.ceramint.2020.06.131
    [86]
    SHEN Y P, WANG Y B, LUO Z L, et al. Durable, sensitive, and wide-range wearable pressure sensors based on wavy-structured flexible conductive composite film[J]. Macromolecular Materials and Engineering,2020,305(8):2000206. doi: 10.1002/mame.202000206
    [87]
    DING Y C, YANG J, TOLLE C, et al. Flexible and compressible PEDOT PSS melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection[J]. ACS Applied Materials & Interfaces,2018,10:16077-16086.
    [88]
    DONG X C, WEI Y, CHEN S, et al. A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge[J]. Composites Science and Technology,2018,155:108-116. doi: 10.1016/j.compscitech.2017.11.028
    [89]
    QIN R, HU M, LI X, et al. A highly sensitive piezoresistive sensor based on MXenes and polyvinyl butyral with a wide detection limit and low power consumption[J]. Nanoscale,2020,12(34):17715-17724. doi: 10.1039/D0NR02012E
    [90]
    PANG Y, TIAN H, TAO L, et al. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure[J]. ACS Applied Materials & Interfaces,2016,8(40):26458-26462.
    [91]
    BAI N N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature Communications,2020,11:209. doi: 10.1038/s41467-019-14054-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (3602) PDF downloads(657) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return