Volume 39 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
WANG Shichong, CHEN Yanyu, HOU Yang, et al. Preparation and property regulation of modified carbon fiber/photosensitive resin composite for UV-curing 3D printing[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4509-4517. doi: 10.13801/j.cnki.fhclxb.20211109.001
Citation: WANG Shichong, CHEN Yanyu, HOU Yang, et al. Preparation and property regulation of modified carbon fiber/photosensitive resin composite for UV-curing 3D printing[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4509-4517. doi: 10.13801/j.cnki.fhclxb.20211109.001

Preparation and property regulation of modified carbon fiber/photosensitive resin composite for UV-curing 3D printing

doi: 10.13801/j.cnki.fhclxb.20211109.001
  • Received Date: 2021-09-10
  • Accepted Date: 2021-11-04
  • Rev Recd Date: 2021-11-03
  • Available Online: 2021-11-10
  • Publish Date: 2022-08-22
  • Due to the fast curing speed, high precision and smooth surface, UV-curing 3D printing has become one of the preferred technologies to rapidly manufacture sophisticated devices. However, the photosensitive resins for UV-curing 3D printing are still challenged by poor mechanical strength and toughness. Carbon fiber has been widely utilized in diverse structural or functional composites because of its excellent characteristics like electrical conductivity, heat conductivity, high specific strength and high specific modulus. Therefore, modified short carbon fiber (MCF) was prepared by chemical oxidation and modification with silane coupling agent (KH580). Then, the modified carbon fiber/photosensitive resin (MCF/PR) composite was prepared by compositing MCF with 3D printing photosensitive resin (PR). The UV-curing kinetics of MCF/PR composite and mechanical performances of 3D printed samples were also studied. The results indicate that when the grafted amount of KH580 is 0.5wt% and the content of MCF is 0.15wt%, the viscosity of MCF/PR composite is increased to some extent, but the curing depth and critical exposure are insignificantly influenced by MCF, which still meets the requirements of UV-curing 3D printing. A variety of devices are successfully fabricated by stereolithography (SLA) 3D printing. The tensile strength and impact strength of 3D printed samples are 70 MPa and 1.91 kJ/m2, respectively, which are increased by about 100% and 60% compared with pure PR. Moreover, the 3D printed MCF/PR composite has good thermostability below 350℃.

     

  • loading
  • [1]
    NGO T D, KASHANI A, LMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [2]
    XIANG H P, WANG X W, OU Z R, et al. UV-curable, 3D printable and biocompatible silicone elastomers[J]. Progress in Organic Coatings,2019,137:105372. doi: 10.1016/j.porgcoat.2019.105372
    [3]
    LIU Z, HONG P, HUANG Z Y, et al. Self-healing, reprocessing and 3D printing of transparent and hydrolysis resistant silicone elastomers[J]. Chemical Engineering Journal,2020,387:124142. doi: 10.1016/j.cej.2020.124142
    [4]
    STANSBURY J W, IDACAVAGE M J. 3D printing with polymers: Challenges among expanding options and opportunities[J]. Dental Materials,2016,32(1):54-64. doi: 10.1016/j.dental.2015.09.018
    [5]
    LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Review,2017,117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
    [6]
    QUAN H Y, ZHANG T, XU H, et al. Photo-curing 3D printing technique and its challenges[J]. Bioactive Materials,2020,5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
    [7]
    SIVADAS B O, ASHCROFT I, KHLOBYSTOV A N, et al. Laser sintering of polymer nanocomposites[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):277-300. doi: 10.1016/j.aiepr.2021.07.003
    [8]
    ZHANG J, XIAO P. 3D printing of photopolymers[J]. Polymer Chemistry,2018,9(13):1530-1540. doi: 10.1039/C8PY00157J
    [9]
    ZHANG X Q, XU Y, LI L, et al. Acrylate-based photosensitive resin for stereolithographic three-dimensional printing[J]. Journal of Applied Polymer Science,2019,136(21):47487. doi: 10.1002/app.47487
    [10]
    王世崇, 朱雨薇, 吴瑶, 等. 光固化3D打印技术及光敏树脂的开发与应用[J]. 功能高分子学报, 2022, 35(1): 19-35.

    WANG Shichong, ZHU Yuwei, WU Yao, et al. Development and applications of UV-curing 3D printing and photosensitive resin[J]. Journal of Functional Polymers, 2022, 35(1): 19-35.
    [11]
    LIGON-AUER S C, SCHWENTENWEIN M, GORSCHE C, et al. Toughening of photo-curable polymer networks: A review[J]. Polymer Chemistry,2016,7(2):257-286. doi: 10.1039/C5PY01631B
    [12]
    宗学文, 周升栋, 刘洁, 等. 光固化3D打印及光敏树脂改性研究进展[J]. 塑料工业, 2020, 48(1):12-17. doi: 10.3969/j.issn.1005-5770.2020.01.003

    ZONG Xuewen, ZHOU Shengdong, LIU Jie, et al. Research progress in photo-curing 3D printing and photosensitive resin modification[J]. China Plastics Industry,2020,48(1):12-17(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.01.003
    [13]
    姜丹丹. 光固化3DP材料的增韧改性及其收缩性能研究[D]. 南京: 南京航空航天大学, 2016.

    JIANG Dandan. Study on toughening modification and shrinkage property of UV-curing 3DP materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
    [14]
    ZHANG T T, ZHOU M X, GUO Z Y, et al. Improving impact toughness of polylactide/ethylene-co-vinyl-acetate blends via adding fumed silica nanoparticles: Effects of specific surface area-dependent interfacial selective distribution of silica[J]. Chinese Journal of Polymer Science,2021,39:1040-1049. doi: 10.1007/s10118-021-2565-4
    [15]
    SPRENGER S, KOTHMANN M H, ALTSTAEDT V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles[J]. Composites Science and Technology,2014,105:86-95. doi: 10.1016/j.compscitech.2014.10.003
    [16]
    POURRAHMANI H, GOLPARVAR M, FASIHI M. A new evaluation criterion for optimizing the mechanical properties of toughened polypropylene/silica nanocomposites[J]. Chinese Journal of Polymer Science,2020,38:877-887. doi: 10.1007/s10118-020-2399-5
    [17]
    LIU Y, LIN Y C, JIAO T, et al. Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing[J]. Polymer Chemistry,2019,10(46):6324-6333. doi: 10.1039/C9PY01411J
    [18]
    MUBARAK S, DHAMODHARAN D, KALE M B, et al. A novel approach to enhance mechanical and thermal pro-perties of SLA 3D printed structure by incorporation of metal-metal oxide nanoparticles[J]. Nanomaterials,2020,10(2):217. doi: 10.3390/nano10020217
    [19]
    LI Y W, PENG S Q, MIAO J T, et al. Isotropic stereolithography resin toughened by core-shell particles[J]. Chemical Engineering Journal,2020,394:124873. doi: 10.1016/j.cej.2020.124873
    [20]
    WENG Z X, ZHOU Y, LIN W X, et al. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer[J]. Composites Part A: Applied Science and Manufacturing,2016,88:234-242. doi: 10.1016/j.compositesa.2016.05.035
    [21]
    AEGERTER N, VOLK M, MAIO C, et al. Pultrusion of hybrid bicomponent fibers for 3D printing of continuous fiber reinforced thermoplastics[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):224-234. doi: 10.1016/j.aiepr.2021.07.004
    [22]
    王鹤. 短碳纤维增强3D打印用光敏树脂及力学性能分析[J]. 中国胶粘剂, 2018, 27(8):24-27.

    WANG He. Mechanical properties analysis and synthesis of short carbon fiber reinforced 3D printing photosensitive resin[J]. China Adhesives,2018,27(8):24-27(in Chinese).
    [23]
    SANO Y, MATSUZAKI R, UEDA M. 3D printing of discontinuous and continuous fibre composites using stereolithography[J]. Additive Manufacturing,2018,24:521-527. doi: 10.1016/j.addma.2018.10.033
    [24]
    刘刚, 胡晓兰, 张朋, 等. 碳纳米管膜层间改性碳纤维/环氧树脂复合材料[J]. 高分子学报, 2013(10):1334-1340.

    LIU Gang, HU Xiaolan, ZHANG Peng, et al. Carbon nanotube film interlayer toughened carbon fiber reinforced epoxy resin hybrid composites[J]. Acta Polymerica Sinica,2013(10):1334-1340(in Chinese).
    [25]
    中国国家标准化管理委员会. 塑料 拉伸性能的测定 第1部分: 总则: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of tensile properties—Part 1: General principles: GB/T 1040.1—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [26]
    中国国家标准化管理委员会. 塑料 薄膜和薄片耐撕裂性能的测定 第1部分: 裤形撕裂法: GB/T 16578.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Film and sheeting—Determination of tear resistance—Part 1: Trouser tear method: GB/T 16578.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27]
    中国国家标准化管理委员会. 塑料 悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics—Determination of izod impact strength: GB/T 1843-2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28]
    白云, 李琴梅, 刘奕忍, 等. 石墨烯材料表面含氧官能团的表征研究[J]. 分析仪器, 2020(4):83-88. doi: 10.3969/j.issn.1001-232x.2020.04.017

    BAI Yun, LI Qinmei, LIU Yiren, et al. Analysis of oxygen-containing functional groups on the surface of graphene material[J]. Analytical Instrumentation,2020(4):83-88(in Chinese). doi: 10.3969/j.issn.1001-232x.2020.04.017
    [29]
    杜慷慨, 林志勇. 碳纤维表面氧化的研究[J]. 华侨大学学报, 1999, 20(2):136-141.

    DU Kangkai, LIN Zhiyong. Oxidation on the surface of carbon fibers[J]. Journal of Huaqiao University,1999,20(2):136-141(in Chinese).
    [30]
    林广鸿, 尹敬峰, 黄鸿, 等. 混杂光固化3D打印树脂固化动力学性能[J]. 材料工程, 2019, 47(12):143-150. doi: 10.11868/j.issn.1001-4381.2018.000667

    LIN Guanghong, YIN Jingfeng, HUANG Hong, et al. Photocuring kinetics properties of hybrid UV-curing resin for 3D printing[J]. Journal of Materials Engineering,2019,47(12):143-150(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000667
    [31]
    HUANG B W, HAN L L, WU B L. Synthesis of diepoxycyclohexylethyl tetramethyldisiloxane and its application to stereolithography 3D printing[J]. Rapid Prototyping Journal, 2020, 26(9): 1515-1524.
    [32]
    KOUSHKI P, KWOK T, HOF L, et al. Reinforcing silicone with hemp fiber for additive manufacturing[J]. Composites Science and Technology,2020,194:108139. doi: 10.1016/j.compscitech.2020.108139
    [33]
    LIN G H, YIN J F, LIN Z Q, et al. Facile thiol-epoxy click chemistry for transparent and aging-resistant silicone/epoxy composite as LED encapsulant[J]. Progress in Organic Coatings,2021,156:106269. doi: 10.1016/j.porgcoat.2021.106269
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1621) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return