YUAN Yuhui, ZHANG Zuoguang, LI Min, et al. EFFECTING FACTORS ON THE TEMPERATURE CHARACTERIZATION IN ELECTRON-BEAM CURING OF EPOXY RESINS[J]. Acta Materiae Compositae Sinica, 2004, 21(6): 47-52.
Citation: YUAN Yuhui, ZHANG Zuoguang, LI Min, et al. EFFECTING FACTORS ON THE TEMPERATURE CHARACTERIZATION IN ELECTRON-BEAM CURING OF EPOXY RESINS[J]. Acta Materiae Compositae Sinica, 2004, 21(6): 47-52.

EFFECTING FACTORS ON THE TEMPERATURE CHARACTERIZATION IN ELECTRON-BEAM CURING OF EPOXY RESINS

More Information
  • Received Date: January 08, 2004
  • Revised Date: May 09, 2004
  • The temperature characterizations of epoxy resin systems during electron-beam curing were measured by using automatic testing and collection systems. The effects of different factors, such as the chemical structures, the molecular weights of epoxy resins and the concentration of resins in the mixture with dilution were investigated. The properties of cured resins were evaluated by the gel mass fraction and the dynamic mechanical analysis. The data indicate that the rising of temperature in resins mainly results from the electron energy absorbance by the epoxy resins, in the process of EB curing, and the absorbency of resin systems depends on its chemical structures rather than the molecular weight of the epoxy oligomer. The addition of diluting agent would change the temperature characterization of resin systems and it was found that the more the concentration of the diluting agent, the higher the peak of temperature curves.
  • Related Articles

    [1]SHI Ouling, TAN Yanyan, WU Xiao, LONG Xuebin, QIN Shuhao. Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210. DOI: 10.13801/j.cnki.fhclxb.20231205.004
    [2]SHI Suyu, ZHAO Kang, ZHANG Xiaoyuan, LUO Fei, WANG Yameng. Structure and properties of PP-MWCNTs/HDPE composites with anisotropic conductivity[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4694-4700. DOI: 10.13801/j.cnki.fhclxb.20211028.002
    [3]ZHAO Zhongguo, AI Taotao, LIU Guorui, WU Peijun, JIA Shikui, SHEN Siyang. Evolution of conductive network and property regulation of multiwall carbon nanotubes-polyurethane/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 770-779. DOI: 10.13801/j.cnki.fhclxb.20200622.001
    [4]HAN Peng, ZHENG Mingsheng, ZHA Junwei, DANG Zhimin. Improved nonlinear conductivity and thermal conductivity of WS2/ethylene propylene diene monomer composites with MWCNTs[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 748-755. DOI: 10.13801/j.cnki.fhclxb.20180514.001
    [5]KEYWORDS FOR COMPOSITES[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 698-698.
    [6]LIU Kaihua, LI Junrong, HE Beihai, LIANG Minglu. Preparation and gas-sensing properties of MWCNTs/cellulose-chitosan conductive composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 1121-1126.
    [7]HE Yi, CHEN Chunlin, LUO Zhi, ZHONG Fei, XU Zhonghao. Preparation of TiO2-MWCNTs and properties of TiO2-MWCNTs/epoxy composite epoxy coatings[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 429-435.
    [8]缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 108-115.
    [9]Surface modification of carbon nanotube and its influence on the conductivity property of carbon nanotube/fluoro-elastomer composite[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 16-21.
    [10]LIANG Xiao-yi, LING Li-cheng, LU Chun-xiang, LIU Lang. INFLUENCE OF EXTERNAL VOLTAGE ON THE CONDUCTIVITY OF COMPOSITES COMPOSED OF CARBON FIBERS AND ABS RESIN[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 14-17.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return