LIN Feng, MEYER Christian. Micromechanics model for the effective elastic properties of hardened cement pastes[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 184-189.
Citation: LIN Feng, MEYER Christian. Micromechanics model for the effective elastic properties of hardened cement pastes[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 184-189.

Micromechanics model for the effective elastic properties of hardened cement pastes

More Information
  • Received Date: May 09, 2006
  • Revised Date: August 13, 2006
  • The theories of mechanics of composite materials and poromechanics were used to develop a micromechanics model capable of simulating the effective elastic properties of Portland cement pastes. Using different length scales, four composite media could be identified for cement pastes and they were simulated using different modeling schemes: the C-S-H matrix was considered as a saturated porous medium; the hydration products were modeled using the Mori-Tanaka scheme; the effective elastic properties of the skeleton of cement paste were described using the three-phase model (or the generalized self-consistent scheme model); and finally the drained and undrained elastic moduli of cement pastes were simulated using the Mori-Tanaka scheme and the theory of poromechanics. The inputs of the proposed model are the intrinsic properties of the constituent components of cement pastes and can be easily obtained in the literature. The proposed model was used to predict the experimental results in the literature and the results demonstrated the effectiveness and accuracy of the model.
  • Related Articles

    [1]LI Xin, LUO Surong. Fracture properties of graphene oxide reinforced cement composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 612-621. DOI: 10.13801/j.cnki.fhclxb.20200610.005
    [2]DONG Ping, SUN Wenlei, FAN Jun, SU Yakun. Response of surface displacement and interlayer fracture toughness of GFRP composite blades shimmy[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3088-3096. DOI: 10.13801/j.cnki.fhclxb.20180716.002
    [3]ZHANG Cong, XIN Chunling, TANG Ke, YAN Baorui, REN Feng, HE Yadong. Fiber fracture mechanism in process of thermoplastic resin continuous impregnation and experiments[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 983-988. DOI: 10.13801/j.cnki.fhclxb.20141118.005
    [4]PENG Fan, MA Qingzhen, DAI Hongliang. Double control parameters of viscoelastic fracture for polymer graded materials[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 33-39.
    [5]WANG Zhaoxi, DOU Baofeng, PANG Xingzhao. Fracture properties of flexible composites from aerostat[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 211-216.
    [6]Experimental investigation on the fracture toughness of Z-pins reinforced composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27(4): 180-188.
    [7]GUO Cheng, CHENG Yu, SHANG Chun-yang, SU Wen-bin, XU Jian-qun. MECHANISMS ON FRACTURE AND STRENGTHENING OF ALUMINIUM ALLOY MATRIX COMPOSITES REINFORCED WITH SiC PARTICLES[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 54-57.
    [8]Dai Lanhong, Wu Guozhang. RELATION BETWEEN FRACTURE TOUGHNESS AND FRACTAL DIMENSION OF FRACTURE SURFACE FOR PP/AT COMPOSITES[J]. Acta Materiae Compositae Sinica, 1996, 13(4): 70-74.
    [9]Tang Guohong, Chen Changqi. INTERFACE FRACTURE[J]. Acta Materiae Compositae Sinica, 1994, 11(3): 43-49.
    [10]Lin Guangming, Zeng Hanmin, Zhang Mingqiu. FRACTAL CHARACTERIZATION OF FRACTURED SURFACES IN A RESIN BASED COMPOSITE[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 13-16.

Catalog

    Article Metrics

    Article views (2483) PDF downloads (1248) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return