Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
WANG Zhenbo, HAO Rusheng, LI Pengfei, et al. Mechanical properties and crack width control of seawater coral sand ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2261-2272. doi: 10.13801/j.cnki.fhclxb.20220607.002
Citation: WANG Zhenbo, HAO Rusheng, LI Pengfei, et al. Mechanical properties and crack width control of seawater coral sand ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2261-2272. doi: 10.13801/j.cnki.fhclxb.20220607.002

Mechanical properties and crack width control of seawater coral sand ECC

doi: 10.13801/j.cnki.fhclxb.20220607.002
Funds:  National Natural Science Foundation of China (51808545); Fundamental Research Funds for the Central Universities (2022 YQLJ05)
  • Received Date: 2022-04-11
  • Accepted Date: 2022-05-26
  • Rev Recd Date: 2022-05-17
  • Available Online: 2022-06-08
  • Publish Date: 2023-04-15
  • In order to address the brittleness and durability issues of coral aggregate concrete, seawater coral sand engineered cementitious composites (SCECC) was prepared by using the regional raw materials located in islands and reefs. The effects of different aggregate types, maximum grain size and fineness modulus on the compressive, tensile properties and crack control ability of ECC were experimentally investigated. The results show that with the decrease of the fineness modulus of coral sand, the compressive strength of SCECC first increases and then decreases, which maximizes (63.3 MPa) at SCECC with the maximum grain size of 2.36 mm. Reducing the maximum grain size of coral sand results in improved tensile performance to varying extents. SCECC with a maximum grain size of 0.60 mm exhibits the best tensile properties, and its initial cracking strength, tensile strength and ultimate tensile strain are 2.29 MPa, 4.11 MPa and 5.15%, respectively. Meanwhile, its average crack width approaching strain capacity is controlled at 81 μm. Compared with tap water-quartz sand ECC, SCECC possesses higher compressive strength and more rapid development of early strength (its 7 days compressive strength can arrive at 73%-78% of 28 days compressive strength). The failure modes of aggregate and polyvinyl alcohol (PVA) fiber in these two ECCs are different, resulting in slightly lower tensile strength, elastic modulus and crack control ability at peak strain, but significantly enhanced tensile ductility of SCECC.

     

  • loading
  • [1]
    WANG A G, LYU B C, ZHANG Z H, et al. The development of coral concretes and their upgrading technologies: A critical review[J]. Construction and Building Materials,2018,187:1004-1019. doi: 10.1016/j.conbuildmat.2018.07.202
    [2]
    马林建, 罗棕木, 段力群, 等. 全珊瑚混凝土的脆性评价[J]. 中国矿业大学学报, 2021, 50(2):281-288.

    MA Linjian, LUO Zongmu, DUAN Liqun, et al. Brittleness evaluation of coral concrete[J]. Journal of China University of Mining & Technology,2021,50(2):281-288(in Chinese).
    [3]
    李小伟, 曹旗. FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展[J]. 复合材料学报, 2022, 39(3):926-941.

    LI Xiaowei, CAO Qi. Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components[J]. Acta Materiae Compositae Sinica,2022,39(3):926-941(in Chinese).
    [4]
    ZHANG J, GONG C X, GUO Z L, et al. Engineered cementitious composite with characteristic of low drying shrinkage[J]. Cement and Concrete Research,2009,39(4):303-312. doi: 10.1016/j.cemconres.2008.11.012
    [5]
    高世壮, 薛善彬, 张鹏, 等. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响[J]. 复合材料学报, 2022, 39(10): 4778-4787.

    GAO Shizhuang, XUE Shanbin, ZHANG Peng, et al. Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4778-4787(in Chinese).
    [6]
    蒋永祥, 王跃, 马耀举, 等. 受蚀高韧性水泥基材料轴压损伤的超声表征[J]. 水利水电技术, 2022, 53(12): 134-140.

    JIANG Yongxiang, WANG Yue, MA Yaoju, et al. Ultrasonic characterization of the compression damage in eroded high toughness cementitious composites[J]. Water Resources and Hydropower Engineering, 2022, 53(12): 134-140(in Chinese).
    [7]
    张君, 陈切顺, 王振波, 等. 无切缝水泥混凝土路面设计与建造[J]. 哈尔滨工业大学学报, 2017, 49(3):68-73.

    ZHANG Jun, CHEN Qieshun, WANG Zhenbo, et al. Design and construction of jointless concrete pavement[J]. Journal of Harbin Institute of Technology,2017,49(3):68-73(in Chinese).
    [8]
    贾毅, 赵人达, 廖平, 等. PP-ECC用于墩底塑性铰区域的抗震性能试验[J]. 中国公路学报, 2019, 32(7):100-110.

    JIA Yi, ZHAO Renda, LIAO Ping, et al. Experimental investigation on seismic behavior of bridge piers with polypropylene-engineered cementitious composite in plastic hinge regions[J]. China Journal of Highway and Transport,2019,32(7):100-110(in Chinese).
    [9]
    WANG Z B, SUN P, ZUO J P, et al. Long-term properties and microstructure change of engineered cementitious composites subjected to high sulfate coal mine water in drying-wetting cycles[J]. Materials & Design,2021,203:109610.
    [10]
    HUANG B T, YU J, WU J Q, et al. Seawater sea-sand engineered cementitious composites (SS-ECC) or marine and coastal applications[J]. Composites Communications,2020,20:100353. doi: 10.1016/j.coco.2020.04.019
    [11]
    李祚, 姚淇耀, 朱圣焱, 等. 乌兰布和沙漠砂制备高延性水泥基复合材料的力学性能[J]. 硅酸盐通报, 2021, 40(4):1103-1115.

    LI Zuo, YAO Qiyao, ZHU Shengyan, et al. Mechanical properties of engineered cementitious composites prepared with sand in Ulanbuh desert[J]. Bulletin of the Chinese Ceramic Society,2021,40(4):1103-1115(in Chinese).
    [12]
    SAHMARAN M, LACHEMI M, HOSSAIN K M A, et al. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites[J]. ACI Materials Journal,2009,106(3):308-316.
    [13]
    中国建筑科学研究院. 普通混凝土用砂、石质量及检验方法标准: JGJ 52—2006[S]. 北京: 中国建筑工业出版社, 2006.

    China Academy of Building Science. Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete: JGJ 52—2006[S]. Beijing: China Architecture & Building Press(in Chinese).
    [14]
    ROKUGO K, KANDA T, YOKOTA H, et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan[J]. Materials and Structures,2009,42(9):1197-1208. doi: 10.1617/s11527-009-9541-8
    [15]
    王振波, 张君, 王庆. 混杂纤维增强延性水泥基复合材料力学性能与裂宽控制[J]. 建筑材料学报, 2018, 21(2):216-221. doi: 10.3969/j.issn.1007-9629.2018.02.007

    WANG Zhenbo, ZHANG Jun, WANG Qing. Mechanical behavior and crack width control of hybrid fiber reinforced ductile cementitious composites[J]. Journal of Building Materials,2018,21(2):216-221(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.02.007
    [16]
    LIU H Z, ZHANG Q, GU C S, et al. Influence of microcracking on the permeability of engineered cementitious composites[J]. Cement and Concrete Composites,2016,72:104-113. doi: 10.1016/j.cemconcomp.2016.05.016
    [17]
    LU C, YU J, LEUNG C K Y. An improved image processing method for assessing multiple cracking development in strain hardening cementitious composites (SHCC)[J]. Cement and Concrete Composites,2016,74:191-200. doi: 10.1016/j.cemconcomp.2016.10.005
    [18]
    韩宇栋, 丁小平, 郝挺宇, 等. 海水珊瑚骨料混凝土耐久性研究现状[J]. 工业建筑, 2021, 51(2):186-192, 120.

    HAN Yudong, DING Xiaoping, HAO Tingyu, et al. Current status of research on durability of seawater-coral aggregate concrete[J]. Industrial Construction,2021,51(2):186-192, 120(in Chinese).
    [19]
    LYV B C, WANG A G, ZHANG Z H, et al. Coral aggregate concrete: Numerical description of physical, chemical and morphological properties of coral aggregate[J]. Cement and Concrete Composites,2019,100:25-34. doi: 10.1016/j.cemconcomp.2019.03.016
    [20]
    王振波, 刘伟康, 韩宇栋, 等. 实现高强度海水珊瑚骨料混凝土的配合比设计[J]. 工业建筑, 2021, 51(6):181-185.

    WANG Zhenbo, LIU Weikang, HAN Yudong, et al. Mix proportion design of high-strength seawater coral aggregate concrete[J]. Industrial Construction,2021,51(6):181-185(in Chinese).
    [21]
    秦修云, 赵军, 刘茂军. 水泥珊瑚砂砂浆的抗压强度与微观结构[J]. 科学技术与工程, 2019, 19(21):239-244. doi: 10.3969/j.issn.1671-1815.2019.21.036

    QIN Xiuyun, ZHAO Jun, LIU Maojun. Compressive strength and microstructure of coral sand cement mortar[J]. Science Technology and Engineering,2019,19(21):239-244(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.21.036
    [22]
    梅军帅, 吴静, 王罗新, 等. 珊瑚砂浆的力学性能与微观结构特征[J]. 建筑材料学报, 2020, 23(2):263-270.

    MEI Junshuai, WU Jing, WANG Luoxin, et al. Mechanical properties and microstructure characteristics of coral sand mortar[J]. Journal of Building Materials,2020,23(2):263-270(in Chinese).
    [23]
    CAI X R, XU S L. Uniaxial compressive properties of ultra high toughness cementitious composite[J]. Journal of Wuhan University of Technology-Materials Science Edition,2011,26(4):762-769. doi: 10.1007/s11595-011-0307-0
    [24]
    ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering,2015,27(1):04014111. doi: 10.1061/(ASCE)MT.1943-5533.0001034
    [25]
    王振波, 左建平, 张君, 等. 混杂纤维延性水泥基材料单轴受压力学特性[J]. 建筑材料学报, 2018, 21(4):639-644. doi: 10.3969/j.issn.1007-9629.2018.04.018

    WANG Zhenbo, ZUO Jianping, ZHANG Jun, et al. Mechanical properties of hybrid fiber reinforced engineered cementitious composites under uniaxial compression[J]. Journal of Building Materials,2018,21(4):639-644(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.04.018
    [26]
    KANDA T, LIN Z, LI V C. Tensile stress-strain modeling of pseudostrain hardening cementitious composites[J]. Journal of Materials in Civil Engineering,2000,12(2):147-156. doi: 10.1061/(ASCE)0899-1561(2000)12:2(147)
    [27]
    张聪, 夏超凡, 袁振, 等. 混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系[J]. 复合材料学报, 2020, 37(7):1754-1762.

    ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Tension constitutive relationship of hybrid fiber reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1754-1762(in Chinese).
    [28]
    姚淇耀, 陆宸宇, 罗月静, 等. PE/PVA纤维海砂ECC的拉伸性能与本构模型[J]. 建筑材料学报, 2022, 25(9):976-983. doi: 10.3969/j.issn.1007‑9629.2022.09.013

    YAO Qiyao, LU Chenyu, LUO Yuejing, et al. Tensile properties and constitutive model of PE/PVA fiber sea sand ECC[J]. Journal of Building Materials,2022,25(9):976-983(in Chinese). doi: 10.3969/j.issn.1007‑9629.2022.09.013
    [29]
    LI M, LI V C. Rheology, fiber dispersion, and robust properties of engineered cementitious composites[J]. Materials and Structures,2013,46(3):405-420. doi: 10.1617/s11527-012-9909-z
    [30]
    李祚, 潘丁菊, 罗月静, 等. 骨料粒径对纤维增强水泥基复合材料性能的影响[J]. 材料科学与工程学报, 2022, 40(2):318-327.

    LI Zuo, PAN Dingju, LUO Yuejing, et al. Effect of aggregate particle size on the mechanical properties of engineered cementitious composite[J]. Journal of Materials Science and Engineering,2022,40(2):318-327(in Chinese).
    [31]
    PAUL S C, VAN ZIJL G P A G. Mechanically induced cracking behaviour in fine and coarse sand strain hardening cement based composites (SHCC) at different load levels[J]. Journal of Advanced Concrete Technology,2013,11(11):301-311. doi: 10.3151/jact.11.301
    [32]
    LI Y B, LI J X, YANG E H, et al. Investigation of matrix cracking properties of engineered cementitious composites (ECCs) incorporating river sands[J]. Cement and Concrete Composites,2021,123:104204. doi: 10.1016/j.cemconcomp.2021.104204
    [33]
    王振波. 聚乙烯醇-钢纤维混杂增强水泥基复合材料力学性能研究[D]. 北京: 清华大学, 2016.

    WANG Zhenbo. Studies on mechanical performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composites[D]. Beijing: Tsinghua University, 2016(in Chinese).
    [34]
    ZHANG X Y, ZUO J P, WANG Z B, et al. The evolution of the microstructure and mechanical properties of coral aggregate mortar under uniaxial compression using ultrasonic analysis[J]. Construction and Building Materials,2021,300:12400.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article Metrics

    Article views (675) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return