Analysis to propagation of stress-wave and delaminating damages of layer symmetrical composite laminates subjected to low velocity impact[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 181-188.
Citation: Analysis to propagation of stress-wave and delaminating damages of layer symmetrical composite laminates subjected to low velocity impact[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 181-188.

Analysis to propagation of stress-wave and delaminating damages of layer symmetrical composite laminates subjected to low velocity impact

More Information
  • Received Date: November 15, 2007
  • Revised Date: February 17, 2008
  • By adopting a piecewise impact force model and the First Shearing Deformation Theory (FSDT), the dynamic behavior of composite laminates with simply supported boundary was analyzed under low velocity impact in the geometric center by a steel ball,including the evolution rules of the impact force and contact time with relations to impact velocity,and vibration response of laminates,stress-wave propagation,as well as surface dent. The delamination area of the laminates was calculated and analyzed by adopting hypothesis of no thickness interface with a simplified version of Tsai-Wu‘s Damage Criteria, and the relation between size of delamination area and initial velocity of steel ball is also presented. The study shows that the impact force is in proportion to the initial velocity of the steel ball. And the phase velocity of stress-wave propagation is the same in each layer of composite laminates for a given direction. The velocity of tensional stress-wave propagation in the direction of fiber concentration is faster than that in the other directions,while it is on the contrary for shearing stress-wave propagation. The delamination of composite laminates occurs even under low velocity impact. The damage area expands and its shape changes with increasing the impact velocity.
  • Related Articles

    [1]HE Longfei, YAN Shilin, LI Yongjing, XIE Xiangyu. Numerical simulation and experiment of 2D unsaturated flow of dual-scale fiber mat[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 869-876. DOI: 10.13801/j.cnki.fhclxb.20190617.002
    [2]FANG Guangwu, GAO Xiguang, SONG Yingdong. Finite element simulation of stress transfer through the multilayer interphase in ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3415-3422. DOI: 10.13801/j.cnki.fhclxb.20180322.001
    [3]XIE Xiangyu, LI Yongjing, YAN Shilin. Numerical simulation of 2-dimensional radial unsaturated flow in liquid composite molding processes[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3386-3392. DOI: 10.13801/j.cnki.fhclxb.20180319.006
    [4]SONG Yongzhong, YU Liqiong, CHENG Jia, LI Yanxia, GU Yizhuo, LI Min, ZHANG Zuoguang. Simulation of resin molding process based on FEPG finite element analysis system[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2749-2756. DOI: 10.13801/j.cnki.fhclxb.20160324.004
    [5]YANG Wanyou, ZHOU Qinghua, WANG Jiaxu, YANG Yong. Modeling and analysis on line contact performance of considering heterogeneous properties of material[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1848-1858. DOI: 10.13801/j.cnki.fhclxb.20151216.003
    [6]WANG Zhenqing, LEI Hongshuai, WANG Xiaoqiang, ZHOU Bo. Finite element simulation for macroscopic mechanical behavior of nano TiO2 particulate reinforced epoxy composites with weak interface[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 236-243.
    [7]ZHANG Jikui, LI Zhengneng, GUAN Zhidong, CHENG Xiaoquan, LIU Tao. Compaction of laminated composites: numerical simulation and analysis on influencing factors[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 125-130.
    [8]DAI Fuhong, ZHANG Boming, DU Shanyi, WU Zhanjun. COMPARISON OF THE FINITE ELEMENT/CONTROL VOLUME METHOD WITH FLOW ANALYSIS NETWORK TECHNOLOGY IN MOULD-FILLING SIMULATION OF RTM PROCESS[J]. Acta Materiae Compositae Sinica, 2004, 21(2): 92-98.
    [9]QIN Wei, LI Haichen, ZHANG Zhiqian, WU Xiaohong. COMPARISON BETWEEN NUMERICAL SIMULATION AND EXPERIMENTAL RESULT OF RESIN FLOW IN RTM[J]. Acta Materiae Compositae Sinica, 2003, 20(4): 77-80.
    [10]WANG Jian-jiang, ZHAO Zhong-min, YE Min-hui, DU Xin-kang, WEN Jin-hua. INFLUENCES OF MECHANICAL VIBRATION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SHS CERAMIC-LINED PIPES[J]. Acta Materiae Compositae Sinica, 2000, 17(2): 55-59.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return