Load reconstruction on advanced composite grids structure (AGS) Ⅱ: Inverse model and verification[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 134-140.
Citation: Load reconstruction on advanced composite grids structure (AGS) Ⅱ: Inverse model and verification[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 134-140.

Load reconstruction on advanced composite grids structure (AGS) Ⅱ: Inverse model and verification

More Information
  • Received Date: November 11, 2007
  • Revised Date: February 15, 2008
  • An optimization technology was adopted to reconstruct the loads applied on the advanced composite grids structure (AGS). Based on the forward response model built in literature [11],a figure of merit J was defined to measure the difference between the calculated response and the measured response. Thus,the inverse problem was converted to searching for inputs that satisfy the minimization of the defined J. Smoothing arithmetic was adopted to the solving and power gradient cloud together with the extreme point of figure of merit J was utilized to guide the searching for the load location. Therefore,a set of methods of load reconstruction are put forward,including location determination and load history recovering. The results of the numerical example and the physical experiment indicate that the methods proposed in this paper run stably and accurately,which provides the necessary techniques for engineering application of AGS.
  • Related Articles

    [1]ZHANG Zhichao, DONG Hongcheng, WANG Fangxin. Phase-field fracture model of anisotropic materials based on stress volumetric-deviatoric split[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4408-4417. DOI: 10.13801/j.cnki.fhclxb.20240019.004
    [2]ZHANG Kunjie, XU Zhaoyang. Preparation and properties of mechanically induced double crosslinked anisotropic cellulose hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 718-725. DOI: 10.13801/j.cnki.fhclxb.20210414.001
    [3]ZHANG Jinna, WANG Chaoyang, ZHU Shijie, YANG Xiangtao, WU Haihong, HUANG Ming. Thickness effect of anisotropic conductive behavior of carbon fiber/polyetheretherketone unidirectional tape[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 780-787. DOI: 10.13801/j.cnki.fhclxb.20200713.004
    [4]LV Shuangqi, MA Yinwei, YANG Xiaoguang, SHI Duoqi, TENG Xuefeng, QI Hongyu. Anisotropic thermal deformation measurement of aerogel composites based on digital image correlation method[J]. Acta Materiae Compositae Sinica, 2017, 34(9): 2020-2029. DOI: 10.13801/j.cnki.fhclxb.20170103.001
    [5]HU Hongling, GONG Youkun, PENG Xiongqi, YIN Hongling. An anisotropic hyperelastic constitutive model considering shear-tension coupling for 2-dimensional woven fabrics[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1388-1393. DOI: 10.13801/j.cnki.fhclxb.20160825.001
    [6]YANG Cai-yun| LI Jia-lu, . Mechanical anisotropy of three dimensional woven composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 59-64.
    [7]LI Mingjun, LIU Guiwu, XU Yongwen, CAO Yihua, YE Hao. INFLUENCES OF BONDINGLAYER ON THE INTERNAL FRICTION CHARACTERISTICS OF ANISOTROPIC LAMINATED DAMPED STRUCTURES[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 96-99.
    [8]SUN Yan, LI Hongyun, XIE Jun. NEW NUMERICAL METHOD FOR SURFACE WAVE PROPAGATION IN MULTILAYER ANISOTROPY MATERIALS[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 165-169.
    [9]Ren Junguo. EXACT ANALYSIS OF DEFORMATION OF ANISOTROPIC LAMINATED CIRCULAR CYLINDRICAL SHELLS UNDER AXISYMMETRIC LOADING[J]. Acta Materiae Compositae Sinica, 1993, 10(4): 23-31.
    [10]Cai Min, Wang Youcheng. ANALYSIS OF ANISOTROPIC THIN SHALLOW SHELLS BY INTEGRAL EQUATION METHOD[J]. Acta Materiae Compositae Sinica, 1990, 7(3): 69-74.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return