Finite element analysis for effects of stochastic properties of particles on ratcheting of SiCP/6061Al composites[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 128-133.
Citation: Finite element analysis for effects of stochastic properties of particles on ratcheting of SiCP/6061Al composites[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 128-133.

Finite element analysis for effects of stochastic properties of particles on ratcheting of SiCP/6061Al composites

More Information
  • Received Date: May 29, 2009
  • Revised Date: September 01, 2009
  • Based on the mesoscopic finite element model of particle reinforced composites , the effect s of stochastic properties of SiC particles on the ratcheting behavior of SiCP/6061Al composites were numerically analyzed by employing a 3D multi-particulate unit cell and using an advanced cyclic plastic constitutive model. In the simulation, a 3D multi-particle unit cell containing the stochastic particle properties was first generated by the random sequential adsorption (RSA) method, and then the effects of the number of particles, the particle arrangement, shape, size and their stochastic distributions on the ratcheting of the composites were discussed by the numerical simulations. The results show that the smaller the particulate size and the higher the proportion of the particles distributing near the surface of matrix as well as the more the number of particulates contained in the unit cell, the higher the resistance to the ratcheting deformation. Meanwhile, the modeled composite with uniform distribution of particle size and location presents higher resistance to the ratcheting deformation than that with random dist ribution. The assumptions of spherical particle and its uniform distributions in size and location in the 3D unit cell can provide a reasonable simulation to the ratcheting of the particle reinforced metal matrix composites.
  • Related Articles

    [1]SHI Ouling, TAN Yanyan, WU Xiao, LONG Xuebin, QIN Shuhao. Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210. DOI: 10.13801/j.cnki.fhclxb.20231205.004
    [2]SHI Suyu, ZHAO Kang, ZHANG Xiaoyuan, LUO Fei, WANG Yameng. Structure and properties of PP-MWCNTs/HDPE composites with anisotropic conductivity[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4694-4700. DOI: 10.13801/j.cnki.fhclxb.20211028.002
    [3]ZHAO Zhongguo, AI Taotao, LIU Guorui, WU Peijun, JIA Shikui, SHEN Siyang. Evolution of conductive network and property regulation of multiwall carbon nanotubes-polyurethane/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 770-779. DOI: 10.13801/j.cnki.fhclxb.20200622.001
    [4]HAN Peng, ZHENG Mingsheng, ZHA Junwei, DANG Zhimin. Improved nonlinear conductivity and thermal conductivity of WS2/ethylene propylene diene monomer composites with MWCNTs[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 748-755. DOI: 10.13801/j.cnki.fhclxb.20180514.001
    [5]KEYWORDS FOR COMPOSITES[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 698-698.
    [6]LIU Kaihua, LI Junrong, HE Beihai, LIANG Minglu. Preparation and gas-sensing properties of MWCNTs/cellulose-chitosan conductive composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 1121-1126.
    [7]HE Yi, CHEN Chunlin, LUO Zhi, ZHONG Fei, XU Zhonghao. Preparation of TiO2-MWCNTs and properties of TiO2-MWCNTs/epoxy composite epoxy coatings[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 429-435.
    [8]缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 108-115.
    [9]Surface modification of carbon nanotube and its influence on the conductivity property of carbon nanotube/fluoro-elastomer composite[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 16-21.
    [10]LIANG Xiao-yi, LING Li-cheng, LU Chun-xiang, LIU Lang. INFLUENCE OF EXTERNAL VOLTAGE ON THE CONDUCTIVITY OF COMPOSITES COMPOSED OF CARBON FIBERS AND ABS RESIN[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 14-17.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return