Boundary force method to predict effective elastic properties of periodical unit cell composite material[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 108-112.
Citation: Boundary force method to predict effective elastic properties of periodical unit cell composite material[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 108-112.

Boundary force method to predict effective elastic properties of periodical unit cell composite material

More Information
  • Received Date: April 08, 2009
  • Revised Date: June 17, 2009
  • The homogenization method has been proved to be a validated and precise method which can be used to predict the effective properties of periodical unit cell composite materials. However due to the complication of the control equation of homogenization method, the homogenization method can not be conveniently realized in commonly used finite element software. The paper describes the boundary force method based on the homogenization method. The homogenization equations were converted to a general three dimension stress problem using Gauss theory in the boundary force method. The surface distributed force of heterogenous material interface is given and the homogenization method control equation is solved by applying the surface boundary force. The effective properties of unidirectional composite material and three dimension four direction braided composite material were calculated by the boundary force method, and the results show that the predictions compare well with theoretical and experimental results.
  • Related Articles

    [1]SHI Ouling, TAN Yanyan, WU Xiao, LONG Xuebin, QIN Shuhao. Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210. DOI: 10.13801/j.cnki.fhclxb.20231205.004
    [2]SHI Suyu, ZHAO Kang, ZHANG Xiaoyuan, LUO Fei, WANG Yameng. Structure and properties of PP-MWCNTs/HDPE composites with anisotropic conductivity[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4694-4700. DOI: 10.13801/j.cnki.fhclxb.20211028.002
    [3]ZHAO Zhongguo, AI Taotao, LIU Guorui, WU Peijun, JIA Shikui, SHEN Siyang. Evolution of conductive network and property regulation of multiwall carbon nanotubes-polyurethane/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 770-779. DOI: 10.13801/j.cnki.fhclxb.20200622.001
    [4]HAN Peng, ZHENG Mingsheng, ZHA Junwei, DANG Zhimin. Improved nonlinear conductivity and thermal conductivity of WS2/ethylene propylene diene monomer composites with MWCNTs[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 748-755. DOI: 10.13801/j.cnki.fhclxb.20180514.001
    [5]KEYWORDS FOR COMPOSITES[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 698-698.
    [6]LIU Kaihua, LI Junrong, HE Beihai, LIANG Minglu. Preparation and gas-sensing properties of MWCNTs/cellulose-chitosan conductive composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 1121-1126.
    [7]HE Yi, CHEN Chunlin, LUO Zhi, ZHONG Fei, XU Zhonghao. Preparation of TiO2-MWCNTs and properties of TiO2-MWCNTs/epoxy composite epoxy coatings[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 429-435.
    [8]缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 108-115.
    [9]Surface modification of carbon nanotube and its influence on the conductivity property of carbon nanotube/fluoro-elastomer composite[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 16-21.
    [10]LIANG Xiao-yi, LING Li-cheng, LU Chun-xiang, LIU Lang. INFLUENCE OF EXTERNAL VOLTAGE ON THE CONDUCTIVITY OF COMPOSITES COMPOSED OF CARBON FIBERS AND ABS RESIN[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 14-17.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return