Geometric model of 2. 5 dimensional woven structures[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 143-148.
Citation: Geometric model of 2. 5 dimensional woven structures[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 143-148.

Geometric model of 2. 5 dimensional woven structures

More Information
  • Received Date: May 27, 2007
  • Revised Date: July 24, 2007
  • Based on the hypothesis of the rectangle and biconvex section shape of the yarn , and different collocations
    between the inner warp and outer warp , thickness , section shape of the same st ructure being considered especially ,a geomet ric cell model for 2. 5D woven st ructures is developed. This model can be used to calculate the configuration of each yarn system , including the orientation angle of the constituent yarns and the fiber volume f raction. To verify the geomet ric model , 28 samples of 2. 5D woven composites with 8 various st ructures are selected and the fiber volume f raction is measured. The experiment result s are in good agreement with the outcomes of the model . Further , the geomet rical model is used to calculate and analyze the fiber volume f raction and oriental angle of three various structures. A conclusion is drawn that the interweaving times of the fiber in a cell is the important factor for the fiber volume f raction , and the tropism angle of the straight2joint structure?s warp is lower than the bend2joint structure?s.
  • Related Articles

    [1]ZHANG Zhichao, DONG Hongcheng, WANG Fangxin. Phase-field fracture model of anisotropic materials based on stress volumetric-deviatoric split[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4408-4417. DOI: 10.13801/j.cnki.fhclxb.20240019.004
    [2]ZHANG Kunjie, XU Zhaoyang. Preparation and properties of mechanically induced double crosslinked anisotropic cellulose hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 718-725. DOI: 10.13801/j.cnki.fhclxb.20210414.001
    [3]ZHANG Jinna, WANG Chaoyang, ZHU Shijie, YANG Xiangtao, WU Haihong, HUANG Ming. Thickness effect of anisotropic conductive behavior of carbon fiber/polyetheretherketone unidirectional tape[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 780-787. DOI: 10.13801/j.cnki.fhclxb.20200713.004
    [4]LV Shuangqi, MA Yinwei, YANG Xiaoguang, SHI Duoqi, TENG Xuefeng, QI Hongyu. Anisotropic thermal deformation measurement of aerogel composites based on digital image correlation method[J]. Acta Materiae Compositae Sinica, 2017, 34(9): 2020-2029. DOI: 10.13801/j.cnki.fhclxb.20170103.001
    [5]HU Hongling, GONG Youkun, PENG Xiongqi, YIN Hongling. An anisotropic hyperelastic constitutive model considering shear-tension coupling for 2-dimensional woven fabrics[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1388-1393. DOI: 10.13801/j.cnki.fhclxb.20160825.001
    [6]YANG Cai-yun| LI Jia-lu, . Mechanical anisotropy of three dimensional woven composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 59-64.
    [7]LI Mingjun, LIU Guiwu, XU Yongwen, CAO Yihua, YE Hao. INFLUENCES OF BONDINGLAYER ON THE INTERNAL FRICTION CHARACTERISTICS OF ANISOTROPIC LAMINATED DAMPED STRUCTURES[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 96-99.
    [8]SUN Yan, LI Hongyun, XIE Jun. NEW NUMERICAL METHOD FOR SURFACE WAVE PROPAGATION IN MULTILAYER ANISOTROPY MATERIALS[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 165-169.
    [9]Ren Junguo. EXACT ANALYSIS OF DEFORMATION OF ANISOTROPIC LAMINATED CIRCULAR CYLINDRICAL SHELLS UNDER AXISYMMETRIC LOADING[J]. Acta Materiae Compositae Sinica, 1993, 10(4): 23-31.
    [10]Cai Min, Wang Youcheng. ANALYSIS OF ANISOTROPIC THIN SHALLOW SHELLS BY INTEGRAL EQUATION METHOD[J]. Acta Materiae Compositae Sinica, 1990, 7(3): 69-74.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return