Damage evolution in 3D SiCf/SiC composites in fatigue-oxidation environment[J]. Acta Materiae Compositae Sinica, 2009, 26(5): 120-126.
Citation: Damage evolution in 3D SiCf/SiC composites in fatigue-oxidation environment[J]. Acta Materiae Compositae Sinica, 2009, 26(5): 120-126.

Damage evolution in 3D SiCf/SiC composites in fatigue-oxidation environment

More Information
  • Received Date: February 22, 2009
  • Revised Date: June 22, 2009
  • The damage evolution in 3D SiCf/SiC composites in the fatigue-oxidation environment was investigated,and the failure mechanism of SiCf/SiC in such environments was also discussed. The results indicate that the main damages in SiCf/SiC composites in fatigue-oxidation environments include:cracking of SiC matrix;debonding,oxidation and ordering of pyrolytic carbon (PyC) interphase;fracture,oxidation and change in microstructure of the fiber. The composite interior is oxidized by the oxidizing atmosphere infiltrating the composites through the cracking matrix. The fibers are pulled out more easily due to the debonding and ordering of PyC interphase. The strength of the fibers is decreased because of the oxidation of the fibers,the increase of the amorphous carbon and the growth of the SiC grain in the SiC fiber.
  • Related Articles

    [1]LI Xin, LUO Surong. Fracture properties of graphene oxide reinforced cement composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 612-621. DOI: 10.13801/j.cnki.fhclxb.20200610.005
    [2]DONG Ping, SUN Wenlei, FAN Jun, SU Yakun. Response of surface displacement and interlayer fracture toughness of GFRP composite blades shimmy[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3088-3096. DOI: 10.13801/j.cnki.fhclxb.20180716.002
    [3]ZHANG Cong, XIN Chunling, TANG Ke, YAN Baorui, REN Feng, HE Yadong. Fiber fracture mechanism in process of thermoplastic resin continuous impregnation and experiments[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 983-988. DOI: 10.13801/j.cnki.fhclxb.20141118.005
    [4]PENG Fan, MA Qingzhen, DAI Hongliang. Double control parameters of viscoelastic fracture for polymer graded materials[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 33-39.
    [5]WANG Zhaoxi, DOU Baofeng, PANG Xingzhao. Fracture properties of flexible composites from aerostat[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 211-216.
    [6]Experimental investigation on the fracture toughness of Z-pins reinforced composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27(4): 180-188.
    [7]GUO Cheng, CHENG Yu, SHANG Chun-yang, SU Wen-bin, XU Jian-qun. MECHANISMS ON FRACTURE AND STRENGTHENING OF ALUMINIUM ALLOY MATRIX COMPOSITES REINFORCED WITH SiC PARTICLES[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 54-57.
    [8]Dai Lanhong, Wu Guozhang. RELATION BETWEEN FRACTURE TOUGHNESS AND FRACTAL DIMENSION OF FRACTURE SURFACE FOR PP/AT COMPOSITES[J]. Acta Materiae Compositae Sinica, 1996, 13(4): 70-74.
    [9]Tang Guohong, Chen Changqi. INTERFACE FRACTURE[J]. Acta Materiae Compositae Sinica, 1994, 11(3): 43-49.
    [10]Lin Guangming, Zeng Hanmin, Zhang Mingqiu. FRACTAL CHARACTERIZATION OF FRACTURED SURFACES IN A RESIN BASED COMPOSITE[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 13-16.

Catalog

    Article Metrics

    Article views (1954) PDF downloads (914) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return