Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
WU Tong, GAO Yuan, WANG Wei, et al. Preparation and high temperature tribological properties of core-shell MoS2@SiO2 nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6163-6172. doi: 10.13801/j.cnki.fhclxb.20230105.003
Citation: WU Tong, GAO Yuan, WANG Wei, et al. Preparation and high temperature tribological properties of core-shell MoS2@SiO2 nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6163-6172. doi: 10.13801/j.cnki.fhclxb.20230105.003

Preparation and high temperature tribological properties of core-shell MoS2@SiO2 nanocomposites

doi: 10.13801/j.cnki.fhclxb.20230105.003
Funds:  National Natural Science Foundation of China (52005386); Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan (2022TD-30)
  • Received Date: 2022-11-17
  • Accepted Date: 2022-12-21
  • Rev Recd Date: 2022-12-16
  • Available Online: 2023-01-06
  • Publish Date: 2023-11-01
  • Molybdenum disulfide (MoS2) is easy to be oxidized when used at high temperature, which leads to significant deterioration of its tribological properties, showing a high friction coefficient. In order to improve the tribological properties of MoS2 lubricant under high temperature environment, core-shell MoS2@SiO2 nanocomposites was formed by hydrothermal method and improved Stöber method. The morphology, size and composition of the nano materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The micro results show that the core-shell structure composite is successfully prepared, with an average particle size of 250 nm. The high temperature friction test of prepared MoS2@SiO2 solid lubrication coating was carried out, and the MoS2 coating was used as a comparison. The morphology and structure of the coating were characterized by SEM and XRD, and the wear rate of the coating was characterized by a 3D profiler. The results show that the friction coefficient of the MoS2@SiO2 coating at 680℃ is 0.2 and relatively stable, while MoS2 coating rapidly fail. The MoS2@SiO2 coating had better wear resistance, with a wear rate at 25.86%, lower than that of MoS2 coating. After the friction tests, MoS2 still existed in the wear scar area of the MoS2@SiO2 coating, which was covered by the lubricating film. However, the substrate in the wear zone of MoS2 coating was completely exposed. It is thus shown that the encapsulation of the SiO2 shell retards the rapid oxidation of MoS2 at high temperatures and the two synergistically lubricate to prolong the service life of the coating.

     

  • loading
  • [1]
    XIE H M, JIANG B, HE J J, et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J]. Tribology International,2016,93:63-70. doi: 10.1016/j.triboint.2015.08.009
    [2]
    林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学报, 2022, 43(9):65-78.

    LIN Gaoxin, WANG Jiacheng. Progress and perspective on molybdenum disulfide with single-atom doping toward hydrogen evolution[J]. Chemical Journal of Chinese Universities,2022,43(9):65-78(in Chinese).
    [3]
    张爽, 王子鸣, 卢雅宁, 等. 熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能[J]. 复合材料学报, 2022, 39(8):3882-3890.

    ZHANG Shuang, WANG Ziming, LU Yaning, et al. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica,2022,39(8):3882-3890(in Chinese).
    [4]
    靳欣, 朱颖, 胡文浩, 等. 原位碳包覆二硫化钼用于锂离子电池负极材料[J]. 有色金属工程, 2021, 11(6):12-16. doi: 10.3969/j.issn.2095-1744.2021.06.003

    JIN Xin, ZHU Ying, HU Wenhao, et al. In-situ carbon-coated molybdenum disulfide as anode material for lithium-ion batteries[J]. Nonferrous Metals Engineering,2021,11(6):12-16(in Chinese). doi: 10.3969/j.issn.2095-1744.2021.06.003
    [5]
    GONG C Y, XIAO J R, ZHU L W, et al. Crystal structure and tribological properties of molybdenum disulfide films prepared by magnetron sputtering technology[J]. Current Applied Physics,2019,19(12):1318-1324. doi: 10.1016/j.cap.2019.08.017
    [6]
    WAN Q M, JIN Y, SUN P C, et al. Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles[J]. Journal of Nanoparticle Research,2014,16(5):1-9. doi: 10.1007/s11051-014-2386-2
    [7]
    HU E Z, XU Y, HU K H, et al. Tribological properties of 3 types of MoS2 additives in different base greases[J]. Lubrication Science,2017,29(8):541-555. doi: 10.1002/ls.1387
    [8]
    谢杭明, 吴汉卿, 何志伟, 等. MoS2/MXene纳米复合物的研究进展[J]. 复合材料学报, 2022, 39(3):1005-1016.

    XIE Hangming, WU Hanqing, HE Zhiwei, et al. Research progress in MoS2/MXene nanocomposites[J]. Acta Materiae Compositae Sinica,2022,39(3):1005-1016(in Chinese).
    [9]
    RAJESH S, VELMURUGAN C, EBENEZER J, et al. Studies on the tribological behaviour of exsitu-synthesized AlMg1SiCu/titanium carbide/molybdenum disulfide hybrid composites[J]. Materials Research Express,2019,6(12):1265b4.
    [10]
    NIAN J Y, CHEN L W, GUO Z G, et al. Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum[J]. Friction,2017,5(1):23-31. doi: 10.1007/s40544-016-0128-4
    [11]
    GUNDA R K, NARALA S K R. Evaluation of friction and wear characteristics of electrostatic solid lubricant at different sliding conditions[J]. Surface & Coatings Technology,2017,332:341-350.
    [12]
    MARTIN J M, DONNET C, LE MOGNE T, et al. Superlubricity of molybdenum disulphide[J]. Physical Review B,1993,48(14):10583-10586. doi: 10.1103/PhysRevB.48.10583
    [13]
    KHARE H S, BURRIS D L. The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide[J]. Tribology Letters,2013,52(3):485-493. doi: 10.1007/s11249-013-0233-8
    [14]
    MURATORE C, BULTMAN J E, AOUADI S M, et al. In situ Raman spectroscopy for examination of high temperature tribological processes[J]. Wear,2011,270(3):140-145.
    [15]
    SPYCHALSKI W L, PISAREK M, SZOSEKIEWICZ R. Microscale insight into oxidation of single MoS2 crystals in air[J]. The Journal of Physical Chemistry C,2017,121(46):26027-26033. doi: 10.1021/acs.jpcc.7b05405
    [16]
    MOHAMMAD R V, ASHLIE M, DAVID A S, et al. Solid lubrication with MoS2: A review[J]. Lubricants,2019,7(7):57. doi: 10.3390/lubricants7070057
    [17]
    MENG F M, YANG C Z, HAN H L, et al. Study on tribological performances of MoS2 coating at high temperature[J]. Proceedings of the Institution of Mechanical Engineers,2018,232(8):964-973. doi: 10.1177/1350650117735272
    [18]
    ZHAI J, LI Y J, ZHAO L C, et al. Exploring the effects of boron nitride coating on the thermal stability and photoluminescence properties of molybdenum disulfide nanospheres[J]. Ceramics International,2019,45(17):23694-23700. doi: 10.1016/j.ceramint.2019.08.084
    [19]
    TIAN Y M, ZHAO J Z, FU W Y, et al. A facile route to synthesis of MoS2 nanorods[J]. Materials Letters,2005,59(27):3452-3455. doi: 10.1016/j.matlet.2005.06.012
    [20]
    ROSENTSVEIG R, GORODNEV A, FEUERSTEIN N, et al. Fullerene-like MoS2 nanoparticles and their tribological behavior[J]. Tribology Letters,2009,36(2):175-182. doi: 10.1007/s11249-009-9472-0
    [21]
    LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials,2012,24(17):2320-2325. doi: 10.1002/adma.201104798
    [22]
    VOLLATH D, SZABÓ D V. Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma[J]. Materials Letters,1998,35(3):236-244.
    [23]
    LU J P, LU J H, LIU H W, et al. Improved photoelectrical properties of MoS2 films after laser micromachining[J]. ACS Nano,2014,8(6):6334-6343. doi: 10.1021/nn501821z
    [24]
    LI N, CHAI Y M, LI Y P, et al. Ionic liquid assisted hydrothermal synthesis of hollow vesicle-like MoS2 microspheres[J]. Materials Letters,2012,66(1):236-238. doi: 10.1016/j.matlet.2011.08.092
    [25]
    PARK S K, YU S H, WOO S, et al. A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties[J]. CrystEngComm,2012,14(24):8323-8325. doi: 10.1039/c2ce26447a
    [26]
    ZHANG X H, HUANG X H, XUE M Q, et al. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres[J]. Materials Letters,2015,148:67-70. doi: 10.1016/j.matlet.2015.02.027
    [27]
    ZHOU X P, XU B, LIN Z F, et al. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors[J]. Journal of Nanoscience and Nanotechnology,2014,14(9):7250-7254. doi: 10.1166/jnn.2014.8929
    [28]
    CHAO Y H, ZHU W S, WU X Y, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic[J]. Chemical Engineering Journal,2014,243:60-67. doi: 10.1016/j.cej.2013.12.048
    [29]
    WANG X W, ZHANG Z A, CHEN Y Q, et al. Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties[J]. Journal of Alloys and Compounds,2014,600:84-90. doi: 10.1016/j.jallcom.2014.02.127
    [30]
    HU K H, HU X G, XU Y F, et al. The effect of morphology on the tribological properties of MoS2 in liquid paraffin[J]. Tribology Letters,2010,40(1):155-165. doi: 10.1007/s11249-010-9651-z
    [31]
    傅重源, 邢淞, 沈涛, 等. 水热法合成纳米花状二硫化钼及其微观结构表征[J]. 物理学报, 2015, 64(1):212-217. doi: 10.7498/aps.64.016102

    FU Chongyuan, XING Song, SHEN Tao, et al. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method[J]. Acta Physica Sinica,2015,64(1):212-217(in Chinese). doi: 10.7498/aps.64.016102
    [32]
    ZHANG Z W, WANG P, WANG F, et al. Controlling dispersion and morphology of MoS2 nanospheres by hydrothermal method using SiO2 as template[J]. Chinese Journal of Chemical Engineering,2018,26(5):1229-1234. doi: 10.1016/j.cjche.2017.12.016
    [33]
    YIN Y H, XU P F, FANG J B, et al. Effect of fly ash cenosphere@SiO2 core-shell microspheres on physical properties and microstructures of vitrified bond diamond tools[J]. Diamond and Related Materials,2020,103:107703. doi: 10.1016/j.diamond.2020.107703
    [34]
    LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: Evolution of Raman scattering[J]. Advanced Functional Materials,2012,22(7):1385-1390. doi: 10.1002/adfm.201102111
    [35]
    MESTL G, RUIZ P, DELMON B, et al. Oxygen-exchange properties of MoO3: An in situ Raman spectroscopy study[J]. Journal of Physical Chemistry,1994,98(44):11269-11275. doi: 10.1021/j100095a007
    [36]
    SANTOS E B, DE SOUZA E SILVA J M, MAZALI I O. Raman spectroscopy as a tool for the elucidation of nanoparticles with core-shell structure of TiO2 and MoO3[J]. Vibrational Spectroscopy,2010,54(2):89-92. doi: 10.1016/j.vibspec.2010.03.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (660) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return