Damage orientation detection of composite lamination using variation of frequency dactylogram[J]. Acta Materiae Compositae Sinica, 2009, 26(01): 196-199.
Citation: Damage orientation detection of composite lamination using variation of frequency dactylogram[J]. Acta Materiae Compositae Sinica, 2009, 26(01): 196-199.

Damage orientation detection of composite lamination using variation of frequency dactylogram

More Information
  • Received Date: January 16, 2008
  • Revised Date: June 13, 2008
  • The polyimide films were placed into composites before solidifying in order to simulate the composite laminations damage. The inherent frequency of the composites with and without damage was tested by using the free vibration method. The damage positions of the composite laminations were identified by using the frequency dactylogram. The detection results show that the frequency dactylogram can be constructed using the frequency data of structures,which is only related with the positions of damage and not the degree of structural damage. The orientation of structural damage can be carried through making use of such frequency dactylogram. The method is proved easy and efficient in solving composites damage problems.
  • Related Articles

    [1]ZHANG Guo, ZHU Haiyang, CAI Yaqi, REN Mingfa, LI Gang. Finite element analysis of the buckling of the liner of composite pressure vessel with depression[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1343-1352. DOI: 10.13801/j.cnki.fhclxb.20210518.004
    [2]CAO Xiaoang, YANG Jie, HAN Xiaoping. Finite element research on the stitching-reinforced composite laminate containing a circular hole[J]. Acta Materiae Compositae Sinica, 2012, (2): 218-227.
    [3]LI Gaochun, XING Yaoguo, JI Zhihong, XIE Likuan. Finite element analysis of microscale interfacial debonding in composite solid propellants[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 229-235.
    [4]Finite element simulation of low velocity impact damage on composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 200-207.
    [5]XU Yangjian, TU Daihui. TRANSIENT TEMPERATURE FIELD ANALYSIS OF FUNCTIONALLY GRADIENT MATERIAL PLATE WITH TEMPERATURE-DEPENDENT MATERIAL PROPERTIES UNDER CONVECTIVE HEAT TRANSFER BOUNDARY BY FINITE ELEMENT METHOD[J]. Acta Materiae Compositae Sinica, 2003, 20(2): 94-99.
    [6]BIAN Wen-feng, ZHU Fu-bao. STOCHASTIC FINITE ELEMENTS ANALYSIS OF LAMINATED SHELLS[J]. Acta Materiae Compositae Sinica, 2000, 17(3): 120-123.
    [7]SHENG Song-en. FINITE ELEMENT ANALYSIS OF MICROSCOPIC STRESS STATE OF A PLAIN WEAVE GLASSFIBER COMPOSITE[J]. Acta Materiae Compositae Sinica, 2000, 17(2): 111-113.
    [8]Liu Wenning, Jiang Wenge. FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD OF TIRE[J]. Acta Materiae Compositae Sinica, 1994, 11(2): 7-13.
    [9]Liu Wenning, Jiang Wenge, Du Xingwen, Wu Baoguo, Gu Zhenlong. 3D FINITE ELEMENT ANALYSIS OF RADIAL TIRE[J]. Acta Materiae Compositae Sinica, 1993, 10(1): 77-84.
    [10]Yang Qingsheng, Chen Haoran. SELF-CONSISTENT FINITE ELEMENT METHOD FOR THE PROBLEMS OF INCLUSION AND THE AVERAGE ELASTIC PROPERTIES OF COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 1992, 9(1): 79-84.

Catalog

    Article Metrics

    Article views (1929) PDF downloads (994) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return