Citation: | CHEN Bin, ZHANG Tao, ZHANG Zhao, YUAN Yang, LU Yiwei. Dynamic mechanical properties and microscopic mechanism of graphene oxide modified coral mortar under impact load[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4687-4698. |
[1] |
汪稔, 吴文娟. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年[J]. 工程地质学报, 2019, 27(1):202-207.
WANG Ren, WU Wenjuan. Exploration and research on engineering geological properties of coral reefs——engaged in coral reef research for 30 years[J]. Journal of Engineering Geology,2019,27(1):202-207(in Chinese).
|
[2] |
ZHANG B, ZHU H, SHAH K W, et al. Performance evaluation and microstructure characterization of seawater and coral/sea sand alkali-activated mortars[J]. Construction and Building Materials,2020,259:120403. doi: 10.1016/j.conbuildmat.2020.120403
|
[3] |
吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10):3181-3191.
WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics,2020,41(10):3181-3191(in Chinese).
|
[4] |
CHEN B, CHAO D J, WU W J, et al. Study on creep mechanism of coral sand based on particle breakage evolution law[J]. Journal of Vibroengineering,2019,21(4):1201-1214. doi: 10.21595/jve.2019.20625
|
[5] |
蔡新光, 赵青, 陈惠苏. 珊瑚混凝土研究现状[J]. 硅酸盐学报, 2021, 49(8):1753-1764.
CAI Xinguang, ZHAO Qing, CHEN Huisu. Research progress in coral concrete[J]. Journal of the Chinese Ceramic Society,2021,49(8):1753-1764(in Chinese).
|
[6] |
陈宾, 邓坚, 胡杰铭, 等. 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 2022, 43(7):1781-1790.
CHEN Bin, DENG Jian, HU Jieming, et al. Macroscopic and microscopic experimental study on fractal fragmentation characteristics of calcareous sand during one-dimensional compression creep[J]. Rock and Soil Mechanics,2022,43(7):1781-1790(in Chinese).
|
[7] |
程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2):339-360.
CHENG Zhihai, YANG Sen, YUAN Xiaoya. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Compositae Sinica,2021,38(2):339-360(in Chinese).
|
[8] |
彭晖, 戈娅萍, 杨振天, 等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139.
PENG Hui, GE Yaping, YANG Zhentian, et al. Mechanical properties and microstructure of graphene oxide reinforced cement-based composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2132-2139(in Chinese).
|
[9] |
WANG Y H, YANG J W, DONG O Y. Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism[J]. Materials,2019,12(22):3753. doi: 10.3390/ma12223753
|
[10] |
YANG F, XIE J, WANG W, et al. Effect of graphene oxide or triethanolamine-modified graphene oxide on the hydration of calcium sulfoaluminate cement[J]. Construction and Building Materials,2022,345:128315. doi: 10.1016/j.conbuildmat.2022.128315
|
[11] |
XU Z F, DAI T, GUI C, et al. Study on Properties of Graphene Oxide Modified Recycled Cement-Based Composites[J]. Integrated Ferroelectrics,2022,227(1):132-144. doi: 10.1080/10584587.2022.2065580
|
[12] |
LEE S J, JEONG S H, KIM D U, et al. Graphene oxide as an additive to enhance the strength of cementitious composites[J]. Composite Structures,2020,242:112154. doi: 10.1016/j.compstruct.2020.112154
|
[13] |
吴家文, 马林建, 孔新立, 等. 冲击荷载下全珊瑚混凝土动力特性[J]. 建筑材料学报, 2020, 23(3):581-588.
WU Jiawen, MA Linjian, KONG Xinli, et al. Dynamic characteristics of coral concrete under impact load[J]. Journal of Building Materials,2020,23(3):581-588(in Chinese).
|
[14] |
吴文娟, 汪稔, 朱长歧, 等. 珊瑚骨料混凝土动态压缩性能的试验研究[J]. 建筑材料学报, 2019, 22(1):7-14. doi: 10.3969/j.issn.1007-9629.2019.01.002
WU Wenjuan, WANG Ren, ZHU Changqi, et al. Experimental study on dynamic compression performance of coral aggregate concrete[J]. Journal of Building Materials,2019,22(1):7-14(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.01.002
|
[15] |
吴彰钰, 余红发, 麻海燕, 等. C45珊瑚混凝土的冲击压缩性能试验及数值模拟[J]. 东南大学学报(自然科学版), 2020, 50(3):488-495.
WU Zhangyu, YU Hongfa, MA Haiyan, et al. Experiment and numerical simulation on impact compressive properties of C45 coral aggregate concrete[J]. Journal of Southeast University(Natural Science Edition),2020,50(3):488-495(in Chinese).
|
[16] |
CHEN B, ZHANG J, ZHAO Y, et al. Experimental study on mechanism of graphene oxide-modified coral sand cement mortar to resist sulfate erosion[J]. Geofluids,2022,b:1905439.
|
[17] |
CHEN B, HE Y, ZHANG Z, et al. Effects of graphene oxide on chloride ion penetration and microstructure of coral-sand cement stones[J]. Marine Georesources & Geotechnology,2022,b:1-8.
|
[18] |
WANG L, MEI J, WU J, et al. Mechanical properties and microscopic mechanism of coral sand-cement mortar[J]. Advances in Materials Science and Engineering,2020:4854892.
|
[19] |
QIN Y, XU D, ZHANG S, et al. Dynamic behavior of carbon nanotubes and basalt fiber reinforced coral sand cement mortar at high strain rates[J]. Construction and Building Materials,2022,340:127396. doi: 10.1016/j.conbuildmat.2022.127396
|
[20] |
GB/T 17671-1999, 水泥胶砂强度检验方法(ISO法)[S].
GB/T 17671-1999, Method of testing cements—Determination of strength[S](in Chinese).
|
[21] |
高光发, 郭扬波. 高强混凝土动态压缩试验分析[J]. 爆炸与冲击, 2019, 39(3):63-72.
GAO Guangfa, GUO Yangbo. Analysis of the dynamic compressive test of high strength concrete[J]. Explosion and Shock Waves,2019,39(3):63-72(in Chinese).
|
[22] |
王礼立, 王永刚. 应力波在用 SHPB 研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25(1):17-25. doi: 10.3321/j.issn:1001-1455.2005.01.004
WANG Lili, WANG Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves,2005,25(1):17-25(in Chinese). doi: 10.3321/j.issn:1001-1455.2005.01.004
|
[23] |
宋力, 胡时胜. SHPB 数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4):368-373. doi: 10.3321/j.issn:1001-1455.2005.04.014
SONG Li, HU Shisheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves,2005,25(4):368-373(in Chinese). doi: 10.3321/j.issn:1001-1455.2005.04.014
|
[24] |
GUO R Q, REN H Q, ZHANG L, et al. Research of an SHPB device in two-by-two form for impact experiments of concrete-like heterogeneous materials[J]. Acta Mechanica Solida Sinica,2021,34(4):561-581. doi: 10.1007/s10338-021-00218-y
|
[25] |
刘婷, 麻海燕, 吴彰钰, 等. 碱式硫酸镁水泥混凝土的冲击压缩性能[J]. 建筑材料学报, 2021, 24(3):562-570.
LIU Ting, MA Haiyan, WU Zhangyu, et al. Impact compressive properties of basic magnesium sulfate cement concrete[J]. Journal of Building Materials,2021,24(3):562-570(in Chinese).
|
[26] |
HUANG Y J, WANG X F, SHENG M, et al. Dynamic behavior of microcapsule-based self-healing concrete subjected to impact loading[J]. Construction and Building Materials,2021,301:124322. doi: 10.1016/j.conbuildmat.2021.124322
|
[27] |
郑志豪, 任辉启, 龙志林, 等. PP/CF增强珊瑚砂水泥基复合材料冲击压缩力学性能研究[J]. 爆炸与冲击, 2022, 42(7):61-73. doi: 10.11883/bzycj-2021-0297
ZHENG Zhihao, REN Huiqi, LONG Zhilin, et al. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion and Shock Waves,2022,42(7):61-73(in Chinese). doi: 10.11883/bzycj-2021-0297
|
[28] |
黄政宇, 王若丁. 应用SHPB试验对超高性能重混凝土动态性能的研究[J]. 铁道科学与工程学报, 2020, 17(11):2798-2806.
HUANG Zhengyu, WANG Ruoding. Dynamic behavior of ultra-high performance heavy concrete in split hopkinson pressure bar testing[J]. Journal of Railway Science and Engineering,2020,17(11):2798-2806(in Chinese).
|
[29] |
SANCHEZ F, ZHANG L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium–silicate–hydrate: interaction energies, structure, and dynamics[J]. Journal of colloid and interface science,2008,323(2):349-358. doi: 10.1016/j.jcis.2008.04.023
|
[30] |
ZHU P, LI H, LING Q, et al. Mechanical properties and microstructure of a graphene oxide–cement composite[J]. Cement and Concrete Composites,2015,58:140-147. doi: 10.1016/j.cemconcomp.2015.02.001
|
[31] |
吕生华, 张佳, 罗潇倩, 等. 氧化石墨烯/水泥基复合材料的微观结构和性能[J]. 材料研究学报, 2018, 32(3):233-240.
LV Shenghua, ZHANG Jia, LUO Xiaoqian, et al. Microstructure and properties for composites of graphene oxide/cement[J]. Chinese Journal of Materials Research,2018,32(3):233-240(in Chinese).
|
[32] |
齐孟, 蒲云东, 杨森, 等. 氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响[J]. 复合材料学报, 2022, 40(0):1-13. doi: 10.13801/j.cnki.fhclxb.20220509.003
QI Meng, PU Yundong, YANG Sen, et al. Effect of graphene oxide on the impermeability of cementitious capillary crystalline waterproofing[J]. Acta Materiae Compositae Sinica,2022,40(0):1-13(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220509.003
|
[33] |
QURESHI T S, PANESAR D K, SIDHUREDDY B, et al. Nano-cement composite with graphene oxide produced from epigenetic graphite deposit[J]. Composites Part B:Engineering,2019,159:248-258. doi: 10.1016/j.compositesb.2018.09.095
|
[34] |
LV S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and building materials,2013,49:121-127. doi: 10.1016/j.conbuildmat.2013.08.022
|
[35] |
ZENG H Y, QU S, QIN Y H. Microstructure and transport properties of cement-based material enhanced by graphene oxide[J]. Magazine of Concrete Research,2021,73(19):1011-1024. doi: 10.1680/jmacr.19.00558
|
[36] |
BIRENBOIM M, NADIV R, ALATAWNA A, et al. Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites[J]. Composites Part B:Engineering,2019,161:68-76. doi: 10.1016/j.compositesb.2018.10.030
|
[37] |
WANG Q, WANG J, LU C, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Materials,2015,30(4):349-356. doi: 10.1016/S1872-5805(15)60194-9
|
[38] |
LI G, YUAN J B, ZHANG Y H, et al. Microstructure and mechanical performance of graphene reinforced cementitious composites[J]. Composites Part A:Applied Science and Manufacturing,2018,114:188-195. doi: 10.1016/j.compositesa.2018.08.026
|
[39] |
沈文峰, 王亮, 徐颖, 等. 冲击荷载下聚丙烯纤维水泥砂浆力学特性研究[J]. 煤炭科学技术, 2022, 50(8):68-74.
SHEN Wenfeng, WANG Liang, XU Ying, et al. Study on mechanical properties of polypropylene fiber cement mortar under impact load[J]. Coal Science and Technology,2022,50(8):68-74(in Chinese).
|
[40] |
BAI Y L, YAN Z W, JIA J F, et al. Dynamic compressive behavior of concrete confined with unidirectional natural flax FRP based on SHPB tests[J]. Composite Structures,2021,259:113233. doi: 10.1016/j.compstruct.2020.113233
|
[41] |
PHAM T M, LIU J, TRAN P, et al. Dynamic compressive properties of lightweight rubberized geopolymer concrete[J]. Construction and Building Materials,2020,265:120753. doi: 10.1016/j.conbuildmat.2020.120753
|