Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LIU Yanzuo, LI Zhenyu, YANG Jinshui. Vibration behavior and damping performance of carbon fiber composite double-arrow corrugated auxetic structures[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4117-4128. doi: 10.13801/j.cnki.fhclxb.20211019.001
Citation: LIU Yanzuo, LI Zhenyu, YANG Jinshui. Vibration behavior and damping performance of carbon fiber composite double-arrow corrugated auxetic structures[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4117-4128. doi: 10.13801/j.cnki.fhclxb.20211019.001

Vibration behavior and damping performance of carbon fiber composite double-arrow corrugated auxetic structures

doi: 10.13801/j.cnki.fhclxb.20211019.001
  • Received Date: 2021-07-15
  • Accepted Date: 2021-10-11
  • Rev Recd Date: 2021-09-27
  • Available Online: 2021-10-26
  • Publish Date: 2022-08-31
  • Composite materials with negative Poisson's ratio have received extensive attention in recent years due to their excellent mechanical properties. The trapezoidal and sinusoidal two-dimensional double arrow carbon fiber composite sandwich structures were fabricated by molding and autoclave process. The vibration frequency response curves of the structures were obtained by frequency sweep test with shaking table. The three-dimensional finite element model of the structure was established and compared with the experimental results to verify the accuracy of the simulation model. Based on this, the effects of cell thickness, angle, topological configuration and thickness gradient on the vibration characteristics and damping performance of the structure were systematically studied. The results show that with the increase of the thickness and angle of the core cell, the natural frequency of the structure increases, the peak value of the acceleration response decreases, and the damping performance of the structure improves. Compared with the sinusoidal structure, the trapezoidal structure usually has higher natural frequency and better damping performance. Compared with other uniform and gradient structures, the weakening structure has better damping performance.

     

  • loading
  • [1]
    任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3):656-687. doi: 10.6052/0459-1879-18-381

    REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):656-687(in Chinese). doi: 10.6052/0459-1879-18-381
    [2]
    WU X, SU Y, SHI J. In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials[J]. Composite Structures,2020,247:112451. doi: 10.1016/j.compstruct.2020.112451
    [3]
    GAO Q, LIAO W H, WANG L M. On the low-velocity impact responses of auxetic double-arrowed honeycomb[J]. Aerospace Science and Technology, 2020, 98: 105698.
    [4]
    WEI L, ZHAO X, YU Q, et al. A novel star auxetic honeycomb with enhanced in-plane crushing strength[J]. Thin-Walled Structures,2020,149:106623. doi: 10.1016/j.tws.2020.106623
    [5]
    卢子兴, 李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017, 36(21):16-22, 39.

    LU Zixing, LI Kang. In-plane dynamic crushing of chiral and anti-chiral honeycombs[J]. Journal of Vibration and Shock,2017,36(21):16-22, 39(in Chinese).
    [6]
    QI C, JIANG F, YU C, et al. In-plane crushing response of tetrachiral honeycombs[J]. International Journal of Impact Engineering,2019,130:247-265.
    [7]
    吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1):41-67.

    WU Linzhi, XIONG Jian, MA Li, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances in Mechanics,2012,42(1):41-67(in Chinese).
    [8]
    杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [9]
    LI S, YANG J S, WU L Z, et al. Vibration behavior of metallic sandwich panels with hourglass truss cores[J]. Marine Structures,2018,63:84-98.
    [10]
    史齐. 负泊松比蜂窝夹芯结构性能表征及优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    SHI Qi. Optimization and mechanics characteristics study of the negative poisson's ratio honeycomb sandwich structure[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [11]
    杜义贤, 李荣, 田启华, 等. 具有吸能和承载特性的多孔结构拓扑优化[J]. 华中科技大学学报(自然科学版), 2019, 47(8):108-113.

    DU Yixian, LI Rong, TIAN Qihua, et al. Topological optimi-zation of porous structure with energy absorption and loading capability[J]. Huazhong University of Science & Technology (Natural Science Edition),2019,47(8):108-113(in Chinese).
    [12]
    侯秀慧, 尹冠生. 负泊松比蜂窝抗冲击性能分析[J]. 机械强度, 2016, 38(5):905-910.

    HOU Xiuhui, YIN Guansheng. Dynamic crushing perfor-mance analysis for auxetic honeycomb structure[J]. Jour-nal of Mechanical Strength,2016,38(5):905-910(in Chinese).
    [13]
    XIAO Y, CAO J Z, WANG S X, et al. Sound transmission loss of plate-type metastructures: Semi-analytical modeling, elaborate analysis, and experimental validation[J]. Mechanical Systems and Signal Processing,2021,153:107487.
    [14]
    JI J C, LUO Q T, YE K. Vibration control based metamaterials and origami structures: A state-of-the-art review[J]. Mechanical Systems and Signal Processing,2021,161:107945.
    [15]
    AN X Y, LAI C L, FAN H L, et al. 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation[J]. International Journal of Solids and Structures, 2020, (191-192): 293-306.
    [16]
    韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击, 2019, 39(1):47-57.

    HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative poisson's ratio[J]. Explosion and Shock Waves,2019,39(1):47-57(in Chinese).
    [17]
    尹冠生, 姚兆楠. 梯度负泊松比蜂窝材料的冲击动力学性能分析[J]. 动力学与控制学报, 2017, 15(1):52-58.

    YIN Guansheng, YAO Zhaonan. Dynamic crushing performance of graded auxetic honeycombs with negative poisson's ratio[J]. Journal of Dynamics and Control,2017,15(1):52-58(in Chinese).
    [18]
    张伟. 三维负泊松比多胞结构的轴向压缩性能研究[D]. 大连: 大连理工大学, 2015.

    ZHANG Wei. The study on axial compression properties of three-dimensional negative poisson’s ratio cellular structure[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [19]
    MOHSENIZADEH S, AHMAD Z. Auxeticity effect on crushing characteristics of auxetic foam-filled square tubes under axial loading[J]. Thin-Walled Structures,2019,145:106379. doi: 10.1016/j.tws.2019.106379
    [20]
    XIAO D, DONG Z, LI Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis[J]. Materials Science and Engineering A,2019,758:163-171.
    [21]
    KALISKE M, ROTHERT H. Damping characterrization of unidirectional fibre reinforced polymer composites[J]. Composites Engineering,1995,5(5):271-283.
    [22]
    ADAMS R D, BACON D G C. Measurement of the flexural damping capacity and dynamic Young's modulus of metals and reinforced plastics[J]. Journal of Physics D: Applied Physics,1973(1):27-41.
    [23]
    MAHERI M R, ADAMS R D. Finite-element prediction of modal response of damped layered composite panels[J]. Composites Science and Technology,1995(1):13-23.
    [24]
    GIBSON R F. Modal vibration response measurements for characterization of composite materials and structures[J]. Composites Science and Technology,2000(15):2769-2780.
    [25]
    YANG J S, MA L, CHAVES-VARGAS M, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels[J]. Composites Science and Technology,2017,147:89-99.
    [26]
    MA L, CHEN Y L, YANG J S, et al. Modal characteristics and damping enhancement of carbon fiber composite auxetic double-arrow corrugated sandwich panels[J]. Composie Structures,2018, 203:539-550.
    [27]
    YANG J S, XIONG J, LI M, et al. Vibration and damping characteristics of hybrid carbon fiber composite pyrami-dal truss sandwich panels with viscoelastic layers[J]. Composite Structures,2013,106(12):570-580.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(6)

    Article Metrics

    Article views (1297) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return