Volume 39 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LIU Wei, ZHANG Yu, LI Zhu, et al. Growth mechanism of the compressive strength of expanded perlite internal curing concrete and establishment of mathematical model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5423-5435. doi: 10.13801/j.cnki.fhclxb.20210930.001
Citation: LIU Wei, ZHANG Yu, LI Zhu, et al. Growth mechanism of the compressive strength of expanded perlite internal curing concrete and establishment of mathematical model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5423-5435. doi: 10.13801/j.cnki.fhclxb.20210930.001

Growth mechanism of the compressive strength of expanded perlite internal curing concrete and establishment of mathematical model

doi: 10.13801/j.cnki.fhclxb.20210930.001
  • Received Date: 2021-08-06
  • Accepted Date: 2021-09-23
  • Rev Recd Date: 2021-09-10
  • Available Online: 2021-09-30
  • Publish Date: 2022-11-01
  • Using expanded perlite (EP) as the internal curing material, the concrete compressive strength test and EP-concrete interface SEM test were carried out, and the influence of the volume admixture rate, prewetting rate and particle size of EP on the growth of concrete compressive strength was studied. Finally, the expression of the volume fraction of the internal curing paste and the degree of hydration reaction under the influence of the three factors of EP volume admixture rate, prewetting rate and particle size was obtained through formula derivation. And combing with Powers model and the model about concrete compression strength with porosity, a mathematical model of EP internal curing concrete compressive strength was established. The results of the compressive strength test show that the internal curing effect of EP can increase the compressive strength of concrete and its growth rate. The 90 days strength of concrete with EP volume admixture rate of 30% exceeds 13% of normal concrete (NC) at the same age. The 90 days strength of concrete with EP prewetting rate of 30% and 50% exceeds respectively 6.3% and 5.3% of NC at the same age, and the strength growth rate shows a trend of first decline and then rise. The 90 days strength of the concrete with EP particle sizes of 0.2-0.5 mm exceeds 6.4% of the NC at the same age, the strength increases slowly in the early stage and rapidly in the later stage. The 90 days compressive strength of the concrete with EP particle sizes of 1.5-3.5 mm and 0.5-1.5 mm increases rapidly in the early stage, and then gradually decreases and stabilizes in the later stage. The SEM test results show that the internal curing effect of EP can promote the cement hydration continuing. The products of hydrated calcium silicate (C-S-H) and ettringite (AFt) increase in quantity, and their arrangement gets denser, which can fill the micro-cracks of the EP-concrete interface. The pores of EP provide growth space for hydration products. The mathematical model verification results show that the mathematical model curve of the compressive strength of concrete internally cured by EP is in good agreement with the 90 days strength test value, and the error between the theoretical value and the test value is less than 12%.

     

  • loading
  • [1]
    缪昌文, 穆松. 混凝土技术的发展与展望[J]. 硅酸盐通报, 2020, 39(1):1-11.

    LIAO Changwen, MU Song. Development and prospect of concrete technology[J]. Bulletin of the Chinese Ceramic Society,2020,39(1):1-11(in Chinese).
    [2]
    王冲, 蒲心诚, 陈科, 等. 超低水胶比水泥浆体材料的水化进程测试[J]. 材料科学与工程学报, 2008, 26(6):852-857.

    WANG Chong, PU Xincheng, CHEN Ke, et al. Measurement of hydration progress of cement paste materials with extreme-low W/B[J]. Journal of Materials Science and Engineering,2008,26(6):852-857(in Chinese).
    [3]
    胡姗, 张洋, 燕达, 等. 中国建筑领域能耗与碳排放的界定与核算[J]. 建筑科学, 2020, 36(S2):288-297.

    HU Shan, ZHANG Yang, YAN Da, et al. Definition and modelling of energy consumption and carbon emissions in China’s building sector[J]. Building Science,2020,36(S2):288-297(in Chinese).
    [4]
    MEHTA P K. Materials science of concrete II[J]. Cement and Concrete Composites,1992,14(1):71-72. doi: 10.1016/0958-9465(92)90041-S
    [5]
    胡曙光, 周宇飞, 王发洲, 等. 高吸水性树脂颗粒对混凝土自收缩与强度的影响[J]. 华中科技大学学报(城市科学版), 2008, 25(1):1-4.

    HU Shuguang, ZHOU Yufei, WANG Fazhou, et al. Influence of super absorbent polymer particles on autogenous shrinkage and compressive strength of concrete[J]. Journal of Huazhong University of Science and Technology Urban Science,2008,25(1):1-4(in Chinese).
    [6]
    BALAPOUR M, ZHAO W, GARBOCZI E J, et al. Potential use of lightweight aggregate (LWA) produced from bottom coal ash for internal curing of concrete systems[J]. Cement and Concrete Composites,2019,105:103428.
    [7]
    杨进. 高吸水树脂内养护混凝土的微观结构与性能[D]. 武汉: 武汉理工大学, 2017.

    YANG Jin. Microstructure and performance of internal curing concrete by SAP[D]. Wuhan: Wuhan University of Technology, 2017(in Chinese).
    [8]
    张磊. 预湿轻骨料内养护自密实混凝土效果评价方法研究[D]. 大连: 大连理工大学, 2020.

    ZHANG Lei. Evaluation method on the internal curing effect of self-compacting concrete by pre-wet lightweight aggregates[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [9]
    易双秦, 刘开志, 邱晶, 等. 吸水珊瑚砂作为超高性能混凝土(UHPC)内养护介质的研究[J]. 硅酸盐通报, 2019, 38(8):2506-2512.

    YI Shuangqin, LIU Kaizhi, QIU Jing, et al. Study on pre-wet coral sand as internal curing agent in ultra-high-perfor-mance concrete (UHPC)[J]. Bulletin of the Chinese Ceramic Society,2019,38(8):2506-2512(in Chinese).
    [10]
    姜玉丹, 金祖权, 陈永丰, 等. 高吸水树脂对混凝土水化及强度的影响[J]. 材料导报, 2017, 31(24):40-44. doi: 10.11896/j.issn.1005-023X.2017.024.009

    JIANG Yudan, JIN Zuquan, CHEN Yongfeng, et al. Influence of super-absorbent polymer on hydration and compressive strength of concrete[J]. Materials Review,2017,31(24):40-44(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.024.009
    [11]
    王奕哲. 内养护高强混凝土性能研究[J]. 新型建筑材料, 2017, 44(10):55-57. doi: 10.3969/j.issn.1001-702X.2017.10.014

    WANG Yizhe. Study on performance of inner curing high strength concrete[J]. New Building Materials,2017,44(10):55-57(in Chinese). doi: 10.3969/j.issn.1001-702X.2017.10.014
    [12]
    陈鹏, 金祖权, 李建强, 等. 盐渍土环境下高吸水树脂混凝土抗压强度及氯离子渗透研究[J]. 海洋工程, 2017, 35(2):50-55.

    CHEN Peng, JIN Zuquan, LI Jianqiang, et al. Compressive strength and chloride penetration of SAP concrete in saline soil environment[J]. Ocean Engineering,2017,35(2):50-55(in Chinese).
    [13]
    YANG L, SHI C, LIU J, et al. Factors affecting the effectiveness of internal curing: A review[J]. Construction and Building Materials,2020,267:121017.
    [14]
    JIANG L, JIA G, JIANG C, et al. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications[J]. Construction and Building Materials,2020,232(7):117222.
    [15]
    王柏顺, 张家广, 周梦君, 等. 基于膨胀珍珠岩固载微生物的裂缝自修复混凝土劈裂抗拉强度试验研究[J]. 混凝土, 2020(3):20-23. doi: 10.3969/j.issn.1002-3550.2020.03.006

    WANG Baishun, ZHANG Jiaguang, ZHOU Mengjun, et al. Experimental study on splitting tensile strength of crack-healing concrete based on immobilizing bacteria in expanded perlite[J]. Concrete,2020(3):20-23(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.03.006
    [16]
    王文花, 李珠, 张家广, 等. 微生物矿化修复混凝土裂缝抗渗水性能试验研究[J]. 混凝土, 2020(3):29-32. doi: 10.3969/j.issn.1002-3550.2020.03.008

    WANG Wenhua, LI Zhu, ZHANG Jiaguang, et al. Experimental study on water permeation resistance of concrete crack healed by microbial mineralization[J]. Concrete,2020(3):29-32(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.03.008
    [17]
    赵福垚. 水泥基材料配合比设计科技建模及智能化前景浅探−基本原则、输入、输出与规律描述方式[J]. 混凝土, 2021(7):34-37. doi: 10.3969/j.issn.1002-3550.2021.07.007

    ZHAO Fuyao. Superficial discussion on the scientific modeling and intelligentialize of cement-based materials mix proportion design−Basic principles, input, output and description of laws[J]. Concrete,2021(7):34-37(in Chinese). doi: 10.3969/j.issn.1002-3550.2021.07.007
    [18]
    赵福垚. 水泥基材料配合比设计科技建模及智能化前景浅探−建模以及行业对接的几个问题[J]. 混凝土, 2021(8):60-63.

    ZHAO Fuyao. Superficial discussion on the scientific modeling and intelligentialize of cement-based materials mix proportion design−Several issues on modeling and industry docking[J]. Concrete,2021(8):60-63(in Chinese).
    [19]
    赵林. 玻化微珠保温混凝土的关键问题研究及工程示范[D]. 太原: 太原理工大学, 2015.

    ZHAO Lin. Study on the key problems of thermal insulation glazed hollow bead concrete and project demonstration[D]. Taiyuan: Taiyuan University of Technology, 2015(in Chinese).
    [20]
    中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of ordinary concrete mechanical properties: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003(in Chinese).
    [21]
    孙诗兵, 聂光临, 姚晓丹, 等. 膨胀珍珠岩掺加量对水泥砂浆性能的影响[J]. 混凝土, 2015(3):114-117. doi: 10.3969/j.issn.1002-3550.2015.03.031

    SUN Shibin, NIE Guanglin, YAO Xiaodan, et al. Influence of adding amount of expended perlite on the roperties of cement mortar[J]. Concrete,2015(3):114-117(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.03.031
    [22]
    聂光临, 孙诗兵, 姚晓丹, 等. 膨胀珍珠岩粒径对水泥砂浆性能的影响[J]. 混凝土与水泥制品, 2014(10):21-24. doi: 10.3969/j.issn.1000-4637.2014.10.005

    NIE Guanglin, SUN Shibing, YAO Xiaodan, et al. Influence of particle size of expended perlite on the properties of cement mortar[J]. China Concrete and Cement Products,2014(10):21-24(in Chinese). doi: 10.3969/j.issn.1000-4637.2014.10.005
    [23]
    贾冠华, 刘鹏, 李珠. 气凝胶/膨胀珍珠岩的制备及其微观特征对导热性能的影响[J]. 硅酸盐通报, 2018, 37(3):1039-1046.

    JIA Guanhua, LIU Peng, LI Zhu. Preparation of aerogel/expanded perlite and influence of its microstructure on thermal conductivity[J]. Bulletin of the Chinese Ceramic Society,2018,37(3):1039-1046(in Chinese).
    [24]
    ZHUTOVSKY S, KONSTANTIN K, BENTUR A. Assessment of distance of water migration in internal curing of high-strength concrete[J]. American Concrete Institute, 2002, Special Publication: SP-220.
    [25]
    BENTZ D P, SNYDER K A. Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate[J]. Cement and Concrete Research,1999,29(11):1863-1867. doi: 10.1016/S0008-8846(99)00178-7
    [26]
    RYSHKEWITCH E. Compression strength of porous sintered alumina and zirconia[J]. Journal of the American Ceramic Society,1953(36):65-68.
    [27]
    向亚平, 魏亚, 张倩倩, 等. 轻细骨料内养护混凝土抗压强度与模拟[J]. 混凝土, 2013(3):44-47, 51. doi: 10.3969/j.issn.1002-3550.2013.03.012

    XIANG Yaping, WEI Ya, ZHANG Qianqian, et al. Compressive strength of internal curing concrete with lightweight fine aggregate-experiment and modeling[J]. Concrete,2013(3):44-47, 51(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.03.012
    [28]
    POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened portland cement paste[J]. Concrete International,1946(43):101-132.
    [29]
    GARBOCZI E J, BENTZ D P. Analytical formulas for interfacial transition zone properties[J]. Advanced Cement Based Materials,1997,6(3):99-108.
    [30]
    高冲. 内养护水掺量与自收缩相关性的试验与机理研究[D]. 大连: 大连理工大学, 2019.

    GAO Chong. Experimental and mechanism study on the correlation between internal curing water content and autogenous shrinkage[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (868) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return