Volume 39 Issue 5
Mar.  2022
Turn off MathJax
Article Contents
XIA Ao, ZENG Xiaoxiong, YI Jue, et al. Preparation and electrochemical properties of Ag/MnO2 composite electrode materials[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2269-2279. doi: 10.13801/j.cnki.fhclxb.20210916.004
Citation: XIA Ao, ZENG Xiaoxiong, YI Jue, et al. Preparation and electrochemical properties of Ag/MnO2 composite electrode materials[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2269-2279. doi: 10.13801/j.cnki.fhclxb.20210916.004

Preparation and electrochemical properties of Ag/MnO2 composite electrode materials

doi: 10.13801/j.cnki.fhclxb.20210916.004
  • Received Date: 2021-05-21
  • Accepted Date: 2021-08-27
  • Rev Recd Date: 2021-08-25
  • Available Online: 2021-09-16
  • Publish Date: 2022-03-23
  • Transition metal oxide MnO2 has great potential in battery storage because of its simple preparation process, abundant reserves, environmental protection and high theoretical specific capacity. In this paper, MnO2 nanosheets were prepared by exfoliating the hydrothermally synthesized δ-MnO2 by the swelling method. The Ag/MnO2 composites were obtained by loading Ag nanoparticles on the surface of MnO2 nanosheets under UV irradiation and NaBH4 reduction. The structure and morphology of Ag/MnO2 composites were characterized and their electrochemical properties were tested. The results show that the electrochemical performance of Ag/MnO2 as anode material for lithium ion batteries is obviously better than that of the pure phase δ-MnO2. The first reversible specific capacity of Ag/MnO2 at the current density of 100 mA/g reaches 1001.1 mA·h/g, and the coulombic efficiency is 79.9%. At the current density of 0.1, 0.2, 0.5, 1.0 and 2.0 A/g, the average reversible specific capacity is 936.3, 607.5, 429.5, 351.1 and 278 mA·h/g, respectively. When the current density returns to 0.1 A/g, the average reversible specific capacity can still reach 658.7 mA·h/g. The improvement of the electrochemical performance of Ag/MnO2 is attributed to the fact that the uniformly loaded conductive Ag particles significantly enhance the electrical conductivity of the electrode material, which is conducive to the transport of charged particles. In addition, the nano-structure of Ag/MnO2 composites shortens the transport path of lithium ions in the solid phase, thus increasing the diffusion rate of lithium ions.

     

  • loading
  • [1]
    罗述东, 李祖德, 赵慕岳, 等. 锰在粉末冶金材料中的应用[J]. 粉末冶金材料科学与工程, 2007, 12(6): 321-329.

    LUO Shudong, LI Zude, ZHAO Muyue, et al. Application of manganese in powder metallurgical materials[J]. Materials Science and Engineering of Powder Metallurgy, 2007, 12(6): 321-329(in Chinese).
    [2]
    顾鑫, 徐化云, 杨剑, 等. 二氧化锰纳米材料在锂离子电池负极材料中的应用[J]. 科学通报, 2013, 58(31):3108-3114. doi: 10.1360/972013-712

    GU Xin, XU Huayun, YANG Jian, et al. Application of MnO2 nanomaterials as an anode for lithiumion batteries[J]. Chinese Science Bulletin,2013,58(31):3108-3114(in Chinese). doi: 10.1360/972013-712
    [3]
    WU M S, CHIANG P C J, LEE J T, et al. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries[J]. Journal of Physical Chemistry B,2005,109(49):23279-23284. doi: 10.1021/jp054740b
    [4]
    WU M S, CHIANG P C J. Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries[J]. Electrochemistry Communications,2006,8(3):383-388. doi: 10.1016/j.elecom.2005.12.014
    [5]
    孔祥荣, 胡如男, 吴延红, 等. MnO2纳米材料的制备及应用[J]. 应用化工, 2016, 45(8):1549-1552.

    KONG Xiangrong, HU Runan, WU Yanhong, et al. Prearation and application of MnO2 nanomaterials[J]. Applied Chemical Industry,2016,45(8):1549-1552(in Chinese).
    [6]
    夏熙. 二氧化锰的物理、化学性质与其电化学活性的相关(5)[J]. 电池, 2006, 36(4):276-279. doi: 10.3969/j.issn.1001-1579.2006.04.012

    XIA Xi. The relation between chemical, physical properties and electrochemical activity for manganese dioxides(Ⅴ)[J]. Battery Bimonthly,2006,36(4):276-279(in Chinese). doi: 10.3969/j.issn.1001-1579.2006.04.012
    [7]
    郑龙. 类钙钛矿结构中氧八面体调制及物性研究[D]. 南京: 南京大学, 2013.

    ZHENG Long. Study of octahedron structure and properties on perovskite like oxides[D]. Nanjing: Nanjing University, 2013(in Chinese).
    [8]
    VOSKANYAN A A, HO C K, CHAN K Y. 3D δ-MnO2 nanostructure with ultralarge mesopores as high-performance lithium-ion battery anode fabricated via colloidal solution combustion synthesis[J]. Journal of Power Sources, 2019, 421: 162-168.
    [9]
    LI X, CHEN Y, YAO H, et al. Core/shell TiO2-MnO2/MnO2 heterostructure anodes for high-performance lithium-ion batteries[J]. RSC Advances,2014,4:39906. doi: 10.1039/C4RA06981A
    [10]
    XING L L, HE B, NIE Y X, et al. SnO2-MnO2-SnO2 sandwich-structured nanotubes as high-performance anodes of lithium ion battery[J]. Materials Letters,2013,105(15):169-172.
    [11]
    GUO Z, GUAN Y, DAI C, et al. Ag/MnO2 nanorod as electrode material for high-performance electrochemical supercapacitors[J]. Journal of Nanoscience and Nanotechnology,2019,18(7):4904-4909.
    [12]
    LU S Q, YAN D L, CHEN L, et al. One-pot fabrication of hierarchical Ag/MnO2 nanoflowers for electrochemical capacitor electrodes[J]. Materials Letters,2016,168(1):40-43.
    [13]
    HWAN K J, CHANGSOON C, MYEONG L J, et al. Ag/MnO2 composite sheath-core structured yarn super-capacitors[J]. Scientific Reports,2018,8(1):13309. doi: 10.1038/s41598-018-31611-2
    [14]
    YANG X F, WANG G C, WANG R Y, et al. A novel layered manganese oxide/poly(aniline-co-O-anisidine) nanocomposite and its application for electrochemical supercapaci-tor[J]. Electrochimica Acta,2010,55(19):5414-5419. doi: 10.1016/j.electacta.2010.04.067
    [15]
    YU L, XU Z Y, WANG D W, et al. Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor[J]. Electrochimica Acta,2017,251:344-354. doi: 10.1016/j.electacta.2017.08.146
    [16]
    DI W H, ZHANG X, QIN W. Single-layer MnO2 nanosheets for sensitive and selective detection of glutathione by a colorimetric method[J]. Applied Surface Science,2017,400:200-205. doi: 10.1016/j.apsusc.2016.12.204
    [17]
    KOO W T, JANG H Y, KIM C, et al. MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode[J]. Journal of Materials Chemistry A,2017,5(43):22717-22725. doi: 10.1039/C7TA07573A
    [18]
    KARMAKAR N, FERNANDES R, JAIN S P, et al. Room temperature NO2 gas sensing properties of p-toluenesulfonic acid doped silver-polypyrrole nanocomposite[J]. Sensors and Actuators B: Chemical,2017,242:118-126. doi: 10.1016/j.snb.2016.11.039
    [19]
    AN J, SUN G H, XIA H A. Aerobic oxidation of 5 hydroxymethylfurfural to high-yield 5 hydroxymethyl-2-furancarboxylic acid by poly(vinylpyrrolidone)-capped Ag nanoparticle catalysts[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):6696-6706.
    [20]
    LI Y, ZHOU X Z, BAI Y, et al. Building an electronic bridge via Ag-decoration to enhance kinetics of iron fluoride cathode in lithium ion batteries[J]. Applied Materials & Interfaces,2017,9(23):19852-19860.
    [21]
    张伟, 谈发堂, 乔学亮, 等. 光化学还原法制备纳米银溶胶[J]. 材料导报, 2012, 26(12):32-35. doi: 10.3969/j.issn.1005-023X.2012.12.010

    ZHANG Wei, TAN Fatang, QIAO Xueliang, et al. Preparation of nano-silver sol by photochemical reduction method[J]. Materials Reports,2012,26(12):32-35(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.12.010
    [22]
    姚素薇, 曹艳蕊, 张卫国. 光还原法制备不同形貌银纳米粒子及其形成机理[J]. 应用化学, 2006, 23(4):438-440. doi: 10.3969/j.issn.1000-0518.2006.04.022

    YAO Suwei, CAO Yanru, ZHANG Weiguo. Preparation of silver nanoparticles of different shapes via photoreduction method[J]. Chinese Jouranal of Applied Chemistry,2006,23(4):438-440(in Chinese). doi: 10.3969/j.issn.1000-0518.2006.04.022
    [23]
    ZANG J, YE J, QIAN H, et al. Hollow carbon sphere with open pore encapsulated MnO2, nanosheets as high-performance anode materials for lithium ion batteries[J]. Electrochimica Acta,2017,260:783-788.
    [24]
    CAO Zhiguang, CHEN Xiaoqiao, XING Lidang, et al. Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries[J]. Journal of Power Sources, 2018, 379: 174-181.
    [25]
    ZHANG Y X, LIAN F, LU J H, et al. Identification of rever-sible insertion-type lithium storage reaction of manganese oxide with long cycle lifespan[J]. Journal of Energy Che-mistry, 2020(46): 144-151.
    [26]
    LIU H D, HU Z L, TIAN L L, et al. Reduced graphene oxide anchored with δ-MnO2 nanoscrolls as anode materials for enhanced Li-ion storage[J]. Ceramics International, 2016, 42(12): 13519-13524.
    [27]
    郑国涛. 锰基氧化物电极材料制备及电化学性能研究[D]. 辽宁: 大连海事大学, 2019.

    ZHENG Guotao. Preparation and electrochemical properties of manganese based oxide electrode materials[D]. Liaoning: Dalian Maritime University, 2019(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (1353) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return