Citation: | ZHAN Yuzhen, LIU Changsong, FU Yongqiang, et al. Preparation of under-liquid superamphiphobic Cu2O films and selective separation performance of oil-water emulsions[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 527-536. DOI: 10.13801/j.cnki.fhclxb.20240423.007 |
In order to achieve the selective separation of oil-water emulsions by under-liquid superamphiphobic materials, the prepared samples were fabricated by considering two aspects: Substrate pore size and wettability, to deal with the phenomenon of difficult separation of oil-water emulsions. In this paper, we used electrochemical constant potential deposition method to deposit the Cu2O film with the rough structure on the surface of stainless steel mesh (SSM), which abbreviated as Cu2O@SSM. The prepared sample of Cu2O@SSM showed the typical characteristics of under-liquid superamphiphobic, and it can easily separate the lotion without the modification of low surface energy materials. According to the size screening effect, the pore size was reduced by coating Cu2O on stainless steel mesh with different meshes, so as to explore the effect of Cu2O@SSM film with different pore sizes on the separation performance of emulsion. Besides, the surface morphology, composition, and wetting performance of the products were characterized using SEM, EDS, XRD, and contact angle measurement, respectively. The water and oil droplets on the surface of Cu2O@SSM showed both superhydrophilic and superoleophilic state with contact angle near to 0° in air. Moreover, the contact angle of underwater superoleophobic and underoil superhydrophobicity exceeded 150°, indicating an under-liquid dual superlyophobic state. By pre-wetting the prepared sample surface with water or oil, the adaptive wettability Cu2O@SSM sample can realize the selective separation of oil-water lotion, and the separation efficiency of oil-water lotion is more than 96%. The Cu2O@SSM film shows the typical selective separation behaviors, which provides a new idea for the selective separation of oil/water emulsions.
[1] |
LI L, SHI Y, HUANG Y, et al. The effect of governance on industrial wastewater pollution in China[J]. International Journal of Environmental Research and Public Health, 2022, 19(15): 9316. DOI: 10.3390/ijerph19159316
|
[2] |
GUO W, ZHANG S, WU G, et al. Quantitative oil spill risk from offshore fields in the Bohai Sea, China[J]. Science of the Total Environment, 2019, 688: 494-504. DOI: 10.1016/j.scitotenv.2019.06.226
|
[3] |
QIU L, ZHANG J, GUO Z, et al. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation[J]. Separation and Purification Technology, 2021, 273: 118994. DOI: 10.1016/j.seppur.2021.118994
|
[4] |
高德玉, 程志林. 微波原位合成2D Ni-Fe MOF/硅藻土复合材料及其改性聚乙烯醇水凝胶不锈钢筛网油水分离性能[J]. 复合材料学报, 2023, 40(3): 1686-1695.
GAO Deyu, CHENG Zhilin. Microwave in-situ synthesis of 2D Ni-Fe MOF/diatomite composite and oil-water separation performance of modified polyvinyl alcohol hydrogel stainless steel screen[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1686-1695(in Chinese).
|
[5] |
XIA C, LI Y, FEI T, et al. Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation[J]. Chemical Engineering Journal, 2018, 345: 648-658. DOI: 10.1016/j.cej.2018.01.079
|
[6] |
GHIASVAND S, RAHMANI A, SAMADI M, et al. Application of polystyrene nanofibers filled with sawdust as separator pads for separation of oil spills[J]. Process Safety and Environmental Protection, 2021, 146: 161-168. DOI: 10.1016/j.psep.2020.08.044
|
[7] |
PENG Y, GUO Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation[J]. Journal of Materials Chemistry A, 2016, 4(41): 15749-15770. DOI: 10.1039/C6TA06922C
|
[8] |
HLAVACEK M. Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane[J]. Journal of Membrane Science, 1995, 102: 1-7. DOI: 10.1016/0376-7388(94)00192-2
|
[9] |
王文文. 液下超双疏性材料的制备及其油水分离性能研究[D]. 长春: 吉林大学, 2023.
WANG Wenwen. Fabrication of underliquid dual superlyophobic materials and the application in oil/water separation [D]. Changchun: Jilin University, 2023(in Chinese).
|
[10] |
王春莹, 齐博浩, 刘长松, 等. 可控润湿性的ZnO修饰不锈钢网的制备及其油水分离性能[J]. 复合材料学报, 2022, 39(12): 5827-5834.
WANG Chunying, QI Bohao, LIU Changsong, et al. Preparation of ZnO modified stainless steel mesh with controllable wettability and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5827-5834(in Chinese).
|
[11] |
井一凡, 刘冬志, 高陈陈, 等. 基于原位聚合构造特殊润湿性复合材料的研究与应用进展 [J]. 复合材料学报, 2024, 41(5): 2262-2279.
JING Yifan, LIU Dongzhi, GAO Chenchen, et al. Progress in research and application of special wettable composite materials based on in situ polymerization[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2262-2279(in Chinese).
|
[12] |
NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677. DOI: 10.1006/anbo.1997.0400
|
[13] |
BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamin-ation in biological surfaces[J]. Planta, 1997, 202: 1-8. DOI: 10.1007/s004250050096
|
[14] |
LIU M, WANG S, WEI Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 2009, 21(6): 665-669. DOI: 10.1002/adma.200801782
|
[15] |
FENG L, ZHANG Z, MAI Z, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie, 2004, 116(15): 2046-2048. DOI: 10.1002/ange.200353381
|
[16] |
HUANG M, SI Y, TANG X, et al. Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes[J]. Journal of Materials Chemistry A, 2013, 1(45): 14071-14074. DOI: 10.1039/c3ta13385k
|
[17] |
XUE Z, WANG S, LIN L, et al. A novel superhydrophilic and underwater super-oleophobic hydrogel-coated mesh for oil/water separation[J]. Advanced Materials, 2011, 23(37): 4270-4273. DOI: 10.1002/adma.201102616
|
[18] |
李培, 苏洪威, 郭美玲, 等. Cu2S@SSM复合膜的制备及其油水分离性能[J]. 功能材料, 2022, 53(11): 11023-11030.
LI Pei, SU Hongwei, GUO Meiling, et al. Preparation of Cu2S@SSM composite membrane and its oil-water separation performance[J]. Journal of Functional Materials, 2022, 53(11): 11023-11030(in Chinese).
|
[19] |
WANG W, LIN J, CHENG J, et al. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties[J]. Journal of Hazardous Materials, 2020, 385: 121582.
|
[20] |
ASHRAFI Z, LUCIA L, KRAUSE W. Nature-inspired liquid infused systems for superwettable surface energies[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21275-21293.
|
[21] |
TIAN X, JOKINEN V, LI J, et al. Unusual dual superlyophobic surfaces in oil-water systems: The design principles[J]. Advanced Materials, 2016, 28(48): 10652-10658. DOI: 10.1002/adma.201602714
|
[22] |
WANG Q, WANG Y, WANG B, et al. Under-liquid dual superlyophobic nanofibrous polymer membranes achieved by coating thin-film composites: A design principle[J]. Chemical Science, 2019, 10(25): 6382-6389. DOI: 10.1039/C9SC01607D
|
[23] |
KANG Y, JIAO S, WANG B, et al. PVDF-modified TiO2 nanowires membrane with underliquid dual superlyophobic property for switchable separation of oil-water emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40925-40936.
|
[24] |
WANG W, KANG Y, CUI C, et al. Fabrication of underliquid dual superlyophobic membrane via anchoring polyethersulfone nanoparticles on Zn-Ni-Co layered double hydroxide (LDH) nanowires with stainless steel mesh as supporter[J]. Separation and Purification Technology, 2022, 294: 121148. DOI: 10.1016/j.seppur.2022.121148
|
[25] |
GUO S, FANG Y, DONG S, et al. Template-less, surfactantless, electrochemical route to a cuprous oxide microcrystal: From octahedra to monodisperse colloid spheres[J]. Inorganic Chemistry, 2007, 46(23): 9537-9539. DOI: 10.1021/ic7016193
|
[26] |
SUN F, GUO Y, TIAN Y, et al. The effect of additives on the Cu2O crystal morphology in acetate bath by electrodeposition[J]. Journal of Crystal Growth, 2008, 310(2): 318-323. DOI: 10.1016/j.jcrysgro.2007.11.010
|
[27] |
KUO C H, HUANG M H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties[J]. Nano Today, 2010, 5(2): 106-116. DOI: 10.1016/j.nantod.2010.02.001
|
[28] |
孙芳. 电沉积制备氧化亚铜薄膜及其性能研究 [D]. 长春: 吉林大学, 2008.
SUN Fang. The preparation and performance investigation of Cu2O thin films by electrodeposition[D]. Changchun: Jilin University, 2008(in Chinese).
|
[29] |
LEOPOLD S, HERRANEN M, CARLSSON J O, et al. In situ pH measurement of the self-oscillating Cu(II)-lactate system using an electropolymerised polyaniline film as a micro pH sensor[J]. Journal of Electroanalytical Chemistry, 2003, 547(1): 45-52. DOI: 10.1016/S0022-0728(03)00187-6
|
[30] |
LI J, XU C, GUO C, et al. Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux[J]. Journal of Materials Chemistry A, 2018, 6(1): 223-230. DOI: 10.1039/C7TA08076J
|
[31] |
LIU K, JIANG L. Multifunctional integration: From biological to bio-inspired materials[J]. ACS Nano, 2011, 5(9): 6786-6790. DOI: 10.1021/nn203250y
|
[32] |
YONG J, HUO J, CHEN F, et al. Oil/water separation based on natural materials with super-wettability: Recent advances[J]. Physical Chemistry Chemical Physics, 2018, 20(39): 25140-25163. DOI: 10.1039/C8CP04009E
|
[33] |
HU L, GAO S, DING X, et al. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions[J]. ACS Nano, 2015, 9(5): 4835-4842. DOI: 10.1021/nn5062854
|
[34] |
LIPP P, LEE C H, FANE A G, et al. A fundamental study of the ultrafiltration of oil-water emulsions[J]. Journal of Membrane Science, 1988, 36: 161-177. DOI: 10.1016/0376-7388(88)80014-0
|
1. |
翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 连续光纤激光切割金属薄壁材料工艺研究. 红外与激光工程. 2024(02): 33-43 .
![]() | |
2. |
陶洋,李存静,逄增媛,张典堂. 展宽布/网胎针刺C/C复合材料制备及力学性能. 复合材料学报. 2024(04): 1934-1944 .
![]() | |
3. |
董志刚,王中旺,冉乙川,鲍岩,康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展. 机械工程学报. 2024(09): 26-56 .
![]() | |
4. |
席翔,李海龙,陈友元,裴景奇,廖城坤,薛琳,储洪强,冉千平. 碳纤维增强碳基复合材料的介电性能对应力的自感知. 高分子材料科学与工程. 2024(05): 115-124 .
![]() | |
5. |
钱奇伟,张昕,杨贞军,沈镇,校金友. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别. 复合材料学报. 2024(07): 3536-3543 .
![]() | |
6. |
翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 基于正交试验的金属薄壁材料激光切割工艺优化. 中国机械工程. 2024(07): 1279-1289 .
![]() | |
7. |
何金玲. 纤维复材浆料流变性能分析及矿混匀质量应用研究. 粘接. 2024(09): 87-90 .
![]() | |
8. |
姚先龙. 碳基复合材料的应用及相关制备方法. 信息记录材料. 2023(01): 36-38 .
![]() | |
9. |
石磊,罗浩,罗瑞盈. 胶层厚度对C/C复合材料剪切粘接性能的影响. 炭素技术. 2023(04): 22-26 .
![]() | |
10. |
刘科众,陈舟,王泽鹏,韩保恒. C/C复合材料增密过程孔隙结构及演化研究. 机械设计与制造工程. 2022(10): 33-36 .
![]() |