Citation: | ZOU Qiqi, CHEN Jianfei, FU Bing, et al. Mechanical properties of concrete reinforced with macro fibres recycled from waste GFRP[J]. Acta Materiae Compositae Sinica, 2025, 42(3): 1489-1501. DOI: 10.13801/j.cnki.fhclxb.20241017.003 |
Fibre-reinforced polymer (FRP) composites have been widely used in many sectors, such as construction, transportation, energy, aerospace and sports, due to their advantages such as lightweightness, high strength, and excellent durability. A large amount of FRP wastes arises from the production process and at the end-of-life of FRP products, of which 95% is glass fibre reinforced polymer (GFRP) composites. Existing GFRP recycling methods are not economical owing to the low added value of glass fibres and significant degradation of glass fibre properties due to the recycling process. The authors' research team has previously proposed a mechanical method to process decommissioned wind turbine blades into macro fibres, which can then be used to produce macro fibre reinforced concrete (MFRC). This paper presents an experimental study in which the effects of fibre volume fraction, fibre thickness, fibre length, and concrete mix on the compression and splitting tensile properties of MFRC were investigated. The test results show that the splitting tensile strength of the concrete can be significantly enhanced by the addition of macro fibres, e.g., by 40% when the macro fibre volume fraction in mix 2 concrete is 1.5vol%. The applicability of existing equations for predicting the splitting tensile strength of FRC to MFRC is evaluated, and a new equation for predicting the splitting tensile strength of MFRC is proposed based on the test data.
[1] |
DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review[J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 214-233. DOI: 10.1007/s42114-018-0072-z
|
[2] |
COLLINS M, CULEBRAS M, REN G. Chapter 8-The use of lignin as a precursor for carbon fiber-reinforced composites[M]//PUGLIA D, SANTULLI C, SARASINI F. Micro and Nanolignin in Aqueous Dispersions and Polymers. Limerick: Elsevier, 2022: 237-250.
|
[3] |
MENG F, MCKECHNIE J, TURNER T, et al. Environmental aspects of use of recycled carbon fiber composites in automotive applications[J]. Environmental Science & Technology, 2017, 51(21): 12727-12736.
|
[4] |
VIJAY N, RAJKUMARA V, BHATTACHARJEE P. Assessment of composite waste disposal in aerospace industries[J]. Procedia Environmental Sciences, 2016, 35: 563-570. DOI: 10.1016/j.proenv.2016.07.041
|
[5] |
张建川, 张前峰, 蔡红军. 风力发电复合材料叶片废弃物的几种处理方法分析[J]. 材料科学与工程学报, 2012, 30: 473-482.
ZHANG Jianchuan, ZHANG Qianfeng, CAI Hongjun. Analysis on treatment methods of composite blade wastes of wind turbines[J]. Journal of Materials Science & Engineering, 2012, 30: 473-482(in Chinese).
|
[6] |
GHARDE S, KANDASUBRAMANIAN B. Mechanothermal and chemical recycling methodologies for the fibre reinforced plastic (FRP)[J]. Environmental Technology & Innovation, 2019, 14: 100311.
|
[7] |
HALLIWELL S. FRPs—The environmental agenda[J]. Advances in Structural Engineering, 2010, 13: 783-791. DOI: 10.1260/1369-4332.13.5.783
|
[8] |
JOB S. Recycling glass fibre reinforced composites—History and progress[J]. Reinforced Plastics, 2013, 57: 19-23. DOI: 10.1016/S0034-3617(13)70151-6
|
[9] |
BROEKEL J, SCHARR G. The specialties of fiber-reinforced plastics in terms of product lifecycle management[J]. Journal of Materials Processing Technology, 2005, 162-163: 725-729. DOI: 10.1016/j.jmatprotec.2005.02.226
|
[10] |
MEIRA CASTRO A C, CARVALHO J, RIBEIRO M, et al. An integrated recycling approach for GFRP pultrusion wastes: Recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets[J]. Journal of Cleaner Production, 2013, 66: 420-430.
|
[11] |
OLIVEUX G, DANDY L O, LEEKE G A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties[J]. Progress in Materials Science, 2015, 72: 61-99. DOI: 10.1016/j.pmatsci.2015.01.004
|
[12] |
YAZDANBAKHSH A, BANK L. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction[J]. Polymers, 2014, 6(6): 1810-1826. DOI: 10.3390/polym6061810
|
[13] |
LIU Y, FARNSWORTH M, TIWARI A. A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda[J]. Journal of Cleaner Production, 2017, 140: 1775-1781. DOI: 10.1016/j.jclepro.2016.08.038
|
[14] |
MEYER L O, SCHULTE K, GROVE NIELSEN E. CFRP-recycling following a pyrolysis route: Process optimization and potentials[J]. Journal of Composite Materials, 2009, 43(9): 1121-1132. DOI: 10.1177/0021998308097737
|
[15] |
PIMENTA S, PINHO S T. The effect of recycling on the mechanical response of carbon fibres and their composites[J]. Composite Structures, 2012, 94(12): 3669-3684. DOI: 10.1016/j.compstruct.2012.05.024
|
[16] |
YANG J, LIU J, LIU W, et al. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen-oxygen atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 253-261. DOI: 10.1016/j.jaap.2015.01.017
|
[17] |
PIMENTA S, PINHO S. Recycling carbon fibre reinforced polymers for structural applications—Technology review and market outlook[J]. Waste Management, 2011, 31(2): 378-392. DOI: 10.1016/j.wasman.2010.09.019
|
[18] |
TITTARELLI F, SHAH S. Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1[J]. Construction and Building Materials, 2013, 47: 1532-1538. DOI: 10.1016/j.conbuildmat.2013.06.043
|
[19] |
ALAM M S, SLATER E, BILLAH M. Green concrete made with RCA and FRP scrap aggregate: Fresh and hardened properties[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1783-1794. DOI: 10.1061/(ASCE)MT.1943-5533.0000742
|
[20] |
ASOKAN P, OSMANI M, PRICE A D F. Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites[J]. Journal of Cleaner Production, 2009, 17(9): 821-829. DOI: 10.1016/j.jclepro.2008.12.004
|
[21] |
MASTALI M, DALVAND A, SATTARIFARD A R. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers[J]. Journal of Cleaner Production, 2016, 124: 312-324. DOI: 10.1016/j.jclepro.2016.02.148
|
[22] |
GARCÍA D, VEGAS I, CACHO I. Mechanical recycling of GFRP waste as short-fiber reinforcements in microconcrete[J]. Construction and Building Materials, 2014, 64: 293-300. DOI: 10.1016/j.conbuildmat.2014.02.068
|
[23] |
CRIADO M, DÍAZ I, BASTIDAS J M, et al. Effect of recycled glass fiber on the corrosion behavior of reinforced mortar[J]. Construction and Building Materials, 2014, 64: 261-269. DOI: 10.1016/j.conbuildmat.2014.04.049
|
[24] |
MOHAMMADHOSSEINI H, AWAL A, YATIM J. The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres[J]. Construction and Building Materials, 2017, 143: 147-157. DOI: 10.1016/j.conbuildmat.2017.03.109
|
[25] |
FU B, LIU K C, CHEN J F, et al. Concrete reinforced with macro fibres recycled from waste GFRP[J]. Construction and Building Materials, 2021, 310: 125063. DOI: 10.1016/j.conbuildmat.2021.125063
|
[26] |
YUAN H, LIN W L, YOU X M, et al. A cost-efficient UHPC incorporated with coarse aggregates and macro fibres recycled from waste GFRP[J]. Journal of Building Engineering, 2023, 73: 106786. DOI: 10.1016/j.jobe.2023.106786
|
[27] |
FU B, XU G T, PENG W S, et al. Performance enhancement of recycled coarse aggregate concrete by incorporating with macro fibers processed from waste GFRP[J]. Construction and Building Materials, 2024, 411: 134166. DOI: 10.1016/j.conbuildmat.2023.134166
|
[28] |
FU B, LIN L B, ZHOU X, et al. Effect of incorporating recycled macro fibres on the properties of ultra-high-performance seawater sea-sand concrete[J]. Journal of Building Engineering, 2024, 83: 108460. DOI: 10.1016/j.jobe.2024.108460
|
[29] |
XU G T, LIU M J, XIANG Y, et al. Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete[J]. Journal of Cleaner Production, 2022, 379: 134550. DOI: 10.1016/j.jclepro.2022.134550
|
[30] |
YOU X M, LIN L B, FU B, et al. Ultra-high performance concrete reinforced with macro fibres recycled from waste GFRP composites[J]. Case Studies in Construction Materials, 2023, 18: e02120. DOI: 10.1016/j.cscm.2023.e02120
|
[31] |
American Society of Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M—14[S]. West Conshohocken, PA: ASTM International, 2017.
|
[32] |
YUAN H, FU X H, FAN Y C, et al. Flexural performance of layered macro fiber reinforced concrete beams[J]. Construction and Building Materials, 2022, 357: 129314. DOI: 10.1016/j.conbuildmat.2022.129314
|
[33] |
中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Architecture & Building Press, 2011(in Chinese).
|
[34] |
American Society of Testing Materials. Standard test method for compressive strength of cylindrical concrete specimens: ASTM C39/C39M—14a[S]. West Conshohocken, PA: ASTM International, 2015.
|
[35] |
American Society of Testing Materials. Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression: ASTM C469/C469M—14[S]. West Conshohocken, PA: ASTM International, 2014.
|
[36] |
American Society of Testing Materials. Standard test method for splitting tensile strength of cylindrical concrete specimens: ASTM C496/C496M—11[S]. West Conshohocken, PA: ASTM International, 2011.
|
[37] |
WILLE K, EL TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. DOI: 10.1016/j.cemconcomp.2013.12.015
|
[38] |
WAFA F, ASHOUR S. Mechanical properties of high-strength fiber reinforced concrete[J]. ACI Materials Journal, 1992, 89: 449-455.
|
[39] |
SONG P S, HWANG S J C, MATERIALS B. Mechanical properties of high-strength steel fiber-reinforced concrete[J]. Construction and Building Materials, 2004, 18(9): 669-673. DOI: 10.1016/j.conbuildmat.2004.04.027
|
[40] |
BAE B I, CHOI H K, LEE M S, et al. Indirect tensile strength of UHSC reinforced with steel fibres and its correlation with compressive strength[J]. Magazine of Concrete Research, 2017, 69(15): 772-786. DOI: 10.1680/jmacr.15.00545
|
[41] |
AL AZZAWI Z, SARSAM K. Mechanical properties of high-strength fiber reinforced concrete[J]. Engineering and Technology Journal, 2010, 28: 2442. DOI: 10.30684/etj.28.12.13
|
[42] |
MUSMAR M. Tensile strength of steel fiber reinforced concrete[J]. Contemporary Engineering Sciences, 2013, 6: 225-237. DOI: 10.12988/ces.2013.3531
|
[43] |
EL DIN H, MOHAMED H, KHATER M, et al. Effect of steel fibers on behavior of ultra high performance concrete[C]. First International Interactive Symposium on UHPC. Des Moines: ISU Digital Press, 2016: 1-10.
|
[44] |
LE HOANG A. Evaluation of the splitting tensile strength of ultra-high performance concrete[C]//RILEM-fib International Symposium on FRC (BEFIB). Berlin/Heidelberg: Springer, 2021: 1149-1160.
|
[45] |
THOMAS J, RAMASWAMY A. Mechanical properties of steel fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering, 2007, 19(5): 385-392. DOI: 10.1061/(ASCE)0899-1561(2007)19:5(385)
|
[46] |
NARAYANAN R, DARWISH I Y S. Use of steel fibers as shear reinforcement[J]. ACI Structural Journal, 1987, 84(23): 216-227.
|
[47] |
OH Y H. Evaluation of flexural strength for normal and high strength concrete with hooked steel fibers[J]. Journal of the Korea Concrete Institute, 2008, 20(4): 531-539. DOI: 10.4334/JKCI.2008.20.4.531
|
[48] |
JSCE. Standard specifications for concrete structures—Design: SSCS—2007[S]. Tokyo: JSCE, 2007.
|
[49] |
FIB. Model code for concrete structures 2010: MC2010[S]. Lausanne: FIB, 2013.
|
[50] |
ACI. Building code requirements for structural concrete and commentary: ACI 318R-14[S]. Farmington Hills, MI: ACI, 2014.
|
[51] |
ACI. Report on high-strength concrete: ACI 363R-10[R]. Farmington Hills, MI: ACI, 2010.
|
[52] |
CHU S H, LI L G, KWAN A K H. Fibre factors governing the fresh and hardened properties of steel FRC[J]. Construction and Building Materials, 2018, 186(20): 1228-1238.
|
[1] | SUN Yan, MA Xiangdong, CHEN Machao, XIE Xiaoyang, HE Jiaojie, LI Xiaoling, ZHAO Xiaohong, YANG Liwei. Research progress of positively charged composite nanofiltration membrane for lithium extraction from high magnesium/lithium ratio salt lakes[J]. Acta Materiae Compositae Sinica. |
[2] | WANG Lei, WANG Lei. Preparation of polyvinyl chloride lithium ion sieve membrane and its lithium adsorption properties in brine[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5107-5123. DOI: 10.13801/j.cnki.fhclxb.20221124.002 |
[3] | GAO Yu'nan, ZHOU Litao, WANG Jing, RU Yafang, SUN Meiqiao, FU Jinxiang. Preparation and performances of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 701-707. DOI: 10.13801/j.cnki.fhclxb.20180529.003 |
[4] | WANG Na, LUAN Honghe, ZHANG Jing, FANG Qinghong. Synergistic effects of mesoporous molecular sieve and Cr2O3 with intumescent flame retardant on properties of flame-retarded natural rubber[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 963-969. DOI: 10.13801/j.cnki.fhclxb.20160801.001 |
[5] | YANG Lili, LI Chuanguo, WANG Hong, HU Tingting, ZHANG Wenjie. Photocatalytic degradation of reactive brilliant red X-3B on SrTiO3 supported on HZSM-5 molecular sieve[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2682-2687. DOI: 10.13801/j.cnki.fhclxb.20160220.001 |
[6] | WANG Shaohui, XU Man, LUO Pan, MU Qiulin, XIE Darong, LI Yangping. Surface modification of different coupling agents on mesoporous molecular sieve MCM-41 and effects on properties of MCM-41/epoxy[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 249-258. DOI: 10.13801/j.cnki.fhclxb.20150518.006 |
[7] | GUO Junxian, WANG Bo, YANG Zhenyu. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 152-157. |
[8] | LU Chang, HUANG Xinhui, HE Yuxin, ZHANG Yuqing. Preparation of mesoporous-molecular-sieve/polydicyclopentadiene composites[J]. Acta Materiae Compositae Sinica, 2012, (2): 65-72. |
[9] | YU Jie, CHEN Jingchao, HONG Zhenjun, FENG Jing. Molecular dynamic simulations on the process of Ag Al2O3 powder[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 150-155. |
[10] | MO Zunli, GUO Ruibin, CHEN Hong, SUN Yaling, LI Hejun. Molecular dynamics simulation study on graphite/dendrimers composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 58-62. |